In number theory, the Euclidean algorithm (also called Euclid s algorithm) is an algorithm to determine the greatest common divisor (GCD) of two elements of any Euclidean domain (for example, the integers). Its major significance is that it does not require factoring the two integers, and it is also significant in that it is one of the oldest algorithms known, dating back to the ancient Greeks.
标签: algorithm Euclidean Euclid number
上传时间: 2017-07-17
上传用户:恋天使569
1.Describe a Θ(n lg n)-time algorithm that, given a set S of n integers and another integer x, determines whether or not there exist two elements in S whose sum is exactly x. (Implement exercise 2.3-7.)
上传时间: 2017-04-01
上传用户:糖儿水嘻嘻
1.Describe a Θ(n lg n)-time algorithm that, given a set S of n integers and another integer x, determines whether or not there exist two elements in S whose sum is exactly x. (Implement exercise 2.3-7.) #include<stdio.h> #include<stdlib.h> void merge(int arr[],int low,int mid,int high){ int i,k; int *tmp=(int*)malloc((high-low+1)*sizeof(int)); int left_low=low; int left_high=mid; int right_low=mid+1; int right_high=high; for(k=0;left_low<=left_high&&right_low<=right_high;k++) { if(arr[left_low]<=arr[right_low]){ tmp[k]=arr[left_low++]; } else{ tmp[k]=arr[right_low++]; } } if(left_low<=left_high){ for(i=left_low;i<=left_high;i++){ tmp[k++]=arr[i]; } } if(right_low<=right_high){ for(i=right_low;i<=right_high;i++) tmp[k++]=arr[i]; } for(i=0;i<high-low+1;i++) arr[low+i]=tmp[i]; } void merge_sort(int a[],int p,int r){ int q; if(p<r){ q=(p+r)/2; merge_sort(a,p,q); merge_sort(a,q+1,r); merge(a,p,q,r); } } int main(){ int a[8]={3,5,8,6,4,1,1}; int i,j; int x=10; merge_sort(a,0,6); printf("after Merging-Sort:\n"); for(i=0;i<7;i++){ printf("%d",a[i]); } printf("\n"); i=0;j=6; do{ if(a[i]+a[j]==x){ printf("exist"); break; } if(a[i]+a[j]>x) j--; if(a[i]+a[j]<x) i++; }while(i<=j); if(i>j) printf("not exist"); system("pause"); return 0; }
上传时间: 2017-04-01
上传用户:糖儿水嘻嘻