一元稀疏多项式计算器[加法和乘法] 问题描述: 设计一元系数多项式计数器实现两个多项式间的加法、减法。 基本要求: (1) 输入并建立多项式 (2) 输出多项式,输出形式为整数序列:n,c1,e1,c2,e2……cn,en,其中n是多项式的项数,ci,ei分别为第i项的系数和指数。序列按指数降序排列。 (3) 多项式a和b相加,建立多项式a+b,输出相加的多项式。 (4) 多项式a和b相减,建立多项式a-b,输出相减的多项式。 用带表头结点的单链表存储多项式。 测试数据: (1) (2x+5x8-3.1x11)+(7-5x8+11x9) (2) (6x-3-x+4.4x2-1.2x9)-(-6x-3+5.4x2+7.8x15) (3) (x+x2+x3)+0 (4) (x+x3)-(-x-x-3)
上传时间: 2013-12-03
上传用户:561596
Windowed-Burg method is made in order to improve the Clasical Burg method. Previously, I send the PBURGW.m file, but now I include also the ARBURGW.m algorithm and some NOTES-EXAMPLES to explain it and compare with the pburg.m algorithm from MATLAB.
标签: method Windowed-Burg Previously the
上传时间: 2013-12-22
上传用户:familiarsmile
如果整数A的全部因子(包括1,不包括A本身)之和等于B;且整数B的全部因子(包括1,不包括B本身)之和等于A,则将整数A和B称为亲密数。求3000以内的全部亲密数。 *题目分析与算法设计 按照亲密数定义,要判断数a是否有亲密数,只要计算出a的全部因子的累加和为b,再计算b的全部因子的累加和为n,若n等于a则可判定a和b是亲密数。计算数a的各因子的算法: 用a依次对i(i=1~a/2)进行模运算,若模运算结果等于0,则i为a的一个因子;否则i就不是a的因子。 *
标签: 整数
上传时间: 2015-04-24
上传用户:金宜
.数据结构 假设有M个进程N类资源,则有如下数据结构: MAX[M*N] M个进程对N类资源的最大需求量 AVAILABLE[N] 系统可用资源数 ALLOCATION[M*N] M个进程已经得到N类资源的资源量 NEED[M*N] M个进程还需要N类资源的资源量 2.银行家算法 设进程I提出请求Request[N],则银行家算法按如下规则进行判断。 (1)如果Request[N]<=NEED[I,N],则转(2);否则,出错。 (2)如果Request[N]<=AVAILABLE,则转(3);否则,出错。 (3)系统试探分配资源,修改相关数据: AVAILABLE=AVAILABLE-REQUEST ALLOCATION=ALLOCATION+REQUEST NEED=NEED-REQUEST (4)系统执行安全性检查,如安全,则分配成立;否则试探险性分配作废,系统恢复原状,进程等待。 3.安全性检查 (1)设置两个工作向量WORK=AVAILABLE;FINISH[M]=FALSE (2)从进程集合中找到一个满足下述条件的进程, FINISH[i]=FALSE NEED<=WORK 如找到,执行(3);否则,执行(4) (3)设进程获得资源,可顺利执行,直至完成,从而释放资源。 WORK=WORK+ALLOCATION FINISH=TRUE GO TO 2 (4)如所有的进程Finish[M]=true,则表示安全;否则系统不安全。
上传时间: 2014-01-05
上传用户:moshushi0009
数据结构 假设有M个进程N类资源,则有如下数据结构: MAX[M*N] M个进程对N类资源的最大需求量 AVAILABLE[N] 系统可用资源数 ALLOCATION[M*N] M个进程已经得到N类资源的资源量 NEED[M*N] M个进程还需要N类资源的资源量 2.银行家算法 设进程I提出请求Request[N],则银行家算法按如下规则进行判断。 (1)如果Request[N]<=NEED[I,N],则转(2);否则,出错。 (2)如果Request[N]<=AVAILABLE,则转(3);否则,出错。 (3)系统试探分配资源,修改相关数据: AVAILABLE=AVAILABLE-REQUEST ALLOCATION=ALLOCATION+REQUEST NEED=NEED-REQUEST (4)系统执行安全性检查,如安全,则分配成立;否则试探险性分配作废,系统恢复原状,进程等待。 3.安全性检查 (1)设置两个工作向量WORK=AVAILABLE;FINISH[M]=FALSE (2)从进程集合中找到一个满足下述条件的进程, FINISH[i]=FALSE NEED<=WORK 如找到,执行(3);否则,执行(4) (3)设进程获得资源,可顺利执行,直至完成,从而释放资源。 WORK=WORK+ALLOCATION FINISH=TRUE GO TO 2 (4)如所有的进程Finish[M]=true,则表示安全;否则系统不安全。
上传时间: 2013-12-24
上传用户:alan-ee
1.能实现不同的个数的矩阵连乘. 2.最后矩阵大小是8X8. 3是最优的矩阵相乘. 描 述:给定n 个矩阵{A1, A2,...,An},其中Ai与Ai+1是可乘的,i=1,2…,n-1。考察这n个矩阵的连乘积A1A2...An。矩阵A 和B 可乘的条件是矩阵A的列数等于矩阵B 的行数。若A 是一个p x q矩阵,B是一个q * r矩阵,则其乘积C=AB是一个p * r矩阵,需要pqr次数乘。
上传时间: 2013-12-04
上传用户:wang5829
LCS(最长公共子序列)问题可以简单地描述如下: 一个给定序列的子序列是在该序列中删去若干元素后得到的序列。给定两个序列X和Y,当另一序列Z既是X的子序列又是Y的子序列时,称Z是序列X和Y的公共子序列。例如,若X={A,B,C,B,D,B,A},Y={B,D,C,A,B,A},则序列{B,C,A}是X和Y的一个公共子序列,但它不是X和Y的一个最长公共子序列。序列{B,C,B,A}也是X和Y的一个公共子序列,它的长度为4,而且它是X和Y的一个最长公共子序列,因为X和Y没有长度大于4的公共子序列。 最长公共子序列问题就是给定两个序列X={x1,x2,...xm}和Y={y1,y2,...yn},找出X和Y的一个最长公共子序列。对于这个问题比较容易想到的算法是穷举,对X的所有子序列,检查它是否也是Y的子序列,从而确定它是否为X和Y的公共子序列,并且在检查过程中记录最长的公共子序列。X的所有子序列都检查过后即可求出X和Y的最长公共子序列。X的每个子序列相应于下标集{1,2,...,m}的一个子集。因此,共有2^m个不同子序列,从而穷举搜索法需要指数时间。
上传时间: 2015-06-09
上传用户:气温达上千万的
<1>问题描述 有一个魔王总是使用自己的一种非常精练而又抽象的语言讲话,没有人能听得懂,但他的语言是可以逐步解释成人能听懂的语言,因为他的语言是由以下两种形式的规则由人的语言逐步抽象上去的: (1) α 转换为 β1β2…βm (2) (θδ1δ2…δn) 转换为 θδnθδn-1… θδ1θ 在这两种形式重,从左到右均表示解释。试写一个魔王语言的解释兄,把他的话解释成人能听得懂的话。 [基本要求] 用下述两条具体规则和上述规则形式(2)实现。设大写字母表示魔王语言的词汇;小写字母表示人的语言词汇;希腊字母表示可以用大写字母或小写字母代换的变量。魔王语言可含人的词汇。 (1)B 转换为 tAdA (2)A 转换为 sae
上传时间: 2013-12-17
上传用户:jyycc
c语言版的多项式曲线拟合。 用最小二乘法进行曲线拟合. 用p-1 次多项式进行拟合,p<= 10 x,y 的第0个域x[0],y[0],没有用,有效数据从x[1],y[1] 开始 nNodeNum,有效数据节点的个数。 b,为输出的多项式系数,b[i] 为b[i-1]次项。b[0],没有用。 b,有10个元素ok。
上传时间: 2014-01-12
上传用户:变形金刚
魔王语言解释 [问题描述] 有一个魔王总是使用自己的一种非常精练而又抽象的语言讲话,没有人能听得懂,但他的语言是可以逐步解释成人能听懂的语言,因为他的语言是由以下两种形式的规则由人的语言逐步抽象上去的: (1) α 转换为 β1β2…βm (2) (θδ1δ2…δn) 转换为 θδnθδn-1… θδ1θ 在这两种形式重,从左到右均表示解释。试写一个魔王语言的解释兄,把他的话解释成人能听得懂的话。 [基本要求] 用下述两条具体规则和上述规则形式(2)实现。设大写字母表示魔王语言的词汇;小写字母表示人的语言词汇;希腊字母表示可以用大写字母或小写字母代换的变量。魔王语言可含人的词汇。 (1)B 转换为 tAdA (2)A 转换为 sae [测试数据] B(exnxgz)B解释成tsaedsaeezegexenehetsaedsae 若将小写字母与汉字建立下表所示的对应关系,则魔王说的话是:“天上一只鹅地上一只鹅鹅追鹅赶鹅下鹅蛋鹅恨鹅天上一直鹅地上一只鹅”。 t d s a e z g x n h 天 地 上 一只 鹅 追 赶 下 蛋 恨
上传时间: 2014-12-21
上传用户:大三三