#include "iostream" using namespace std; class Matrix { private: double** A; //矩阵A double *b; //向量b public: int size; Matrix(int ); ~Matrix(); friend double* Dooli(Matrix& ); void Input(); void Disp(); }; Matrix::Matrix(int x) { size=x; //为向量b分配空间并初始化为0 b=new double [x]; for(int j=0;j<x;j++) b[j]=0; //为向量A分配空间并初始化为0 A=new double* [x]; for(int i=0;i<x;i++) A[i]=new double [x]; for(int m=0;m<x;m++) for(int n=0;n<x;n++) A[m][n]=0; } Matrix::~Matrix() { cout<<"正在析构中~~~~"<<endl; delete b; for(int i=0;i<size;i++) delete A[i]; delete A; } void Matrix::Disp() { for(int i=0;i<size;i++) { for(int j=0;j<size;j++) cout<<A[i][j]<<" "; cout<<endl; } } void Matrix::Input() { cout<<"请输入A:"<<endl; for(int i=0;i<size;i++) for(int j=0;j<size;j++){ cout<<"第"<<i+1<<"行"<<"第"<<j+1<<"列:"<<endl; cin>>A[i][j]; } cout<<"请输入b:"<<endl; for(int j=0;j<size;j++){ cout<<"第"<<j+1<<"个:"<<endl; cin>>b[j]; } } double* Dooli(Matrix& A) { double *Xn=new double [A.size]; Matrix L(A.size),U(A.size); //分别求得U,L的第一行与第一列 for(int i=0;i<A.size;i++) U.A[0][i]=A.A[0][i]; for(int j=1;j<A.size;j++) L.A[j][0]=A.A[j][0]/U.A[0][0]; //分别求得U,L的第r行,第r列 double temp1=0,temp2=0; for(int r=1;r<A.size;r++){ //U for(int i=r;i<A.size;i++){ for(int k=0;k<r-1;k++) temp1=temp1+L.A[r][k]*U.A[k][i]; U.A[r][i]=A.A[r][i]-temp1; } //L for(int i=r+1;i<A.size;i++){ for(int k=0;k<r-1;k++) temp2=temp2+L.A[i][k]*U.A[k][r]; L.A[i][r]=(A.A[i][r]-temp2)/U.A[r][r]; } } cout<<"计算U得:"<<endl; U.Disp(); cout<<"计算L的:"<<endl; L.Disp(); double *Y=new double [A.size]; Y[0]=A.b[0]; for(int i=1;i<A.size;i++ ){ double temp3=0; for(int k=0;k<i-1;k++) temp3=temp3+L.A[i][k]*Y[k]; Y[i]=A.b[i]-temp3; } Xn[A.size-1]=Y[A.size-1]/U.A[A.size-1][A.size-1]; for(int i=A.size-1;i>=0;i--){ double temp4=0; for(int k=i+1;k<A.size;k++) temp4=temp4+U.A[i][k]*Xn[k]; Xn[i]=(Y[i]-temp4)/U.A[i][i]; } return Xn; } int main() { Matrix B(4); B.Input(); double *X; X=Dooli(B); cout<<"~~~~解得:"<<endl; for(int i=0;i<B.size;i++) cout<<"X["<<i<<"]:"<<X[i]<<" "; cout<<endl<<"呵呵呵呵呵"; return 0; }
标签: 道理特分解法
上传时间: 2018-05-20
上传用户:Aa123456789
The concept of smart cities emerged few years ago as a new vision for urban development that aims to integrate multiple information and communication technology (ICT) solutions in a secure fashion to manage a city’s assets. Modern ICT infrastructure and e-services should fuel sustainable growth and quality of life, enabled by a wise and participative management of natural resources to be ensured by citizens and government. The need to build smart cities became a requirement that relies on urban development that should take charge of the new infrastructures for smart cities (broadband infrastructures, wireless sensor networks, Internet-based networked applications, open data and open platforms) and provide various smart services and enablers in various domains including healthcare, energy, education, environmental management, transportation, mobility and public safety.
上传时间: 2020-05-25
上传用户:shancjb
Recent years have seen a rapid development of neural network control tech- niques and their successful applications. Numerous simulation studies and actual industrial implementations show that artificial neural network is a good candidate for function approximation and control system design in solving the control problems of complex nonlinear systems in the presence of different kinds of uncertainties. Many control approaches/methods, reporting inventions and control applications within the fields of adaptive control, neural control and fuzzy systems, have been published in various books, journals and conference proceedings.
标签: Stable_adaptive_neural_network_co ntrol
上传时间: 2020-06-10
上传用户:shancjb
AR0231AT7C00XUEA0-DRBR(RGB滤光)安森美半导体推出采用突破性减少LED闪烁 (LFM)技术的新的230万像素CMOS图像传感器样品AR0231AT,为汽车先进驾驶辅助系统(ADAS)应用确立了一个新基准。新器件能捕获1080p高动态范围(HDR)视频,还具备支持汽车安全完整性等级B(ASIL B)的特性。LFM技术(专利申请中)消除交通信号灯和汽车LED照明的高频LED闪烁,令交通信号阅读算法能于所有光照条件下工作。AR0231AT具有1/2.7英寸(6.82 mm)光学格式和1928(水平) x 1208(垂直)有源像素阵列。它采用最新的3.0微米背照式(BSI)像素及安森美半导体的DR-Pix™技术,提供双转换增益以在所有光照条件下提升性能。它以线性、HDR或LFM模式捕获图像,并提供模式间的帧到帧情境切换。 AR0231AT提供达4重曝光的HDR,以出色的噪声性能捕获超过120dB的动态范围。AR0231AT能同步支持多个摄相机,以易于在汽车应用中实现多个传感器节点,和通过一个简单的双线串行接口实现用户可编程性。它还有多个数据接口,包括MIPI(移动产业处理器接口)、并行和HiSPi(高速串行像素接口)。其它关键特性还包括可选自动化或用户控制的黑电平控制,支持扩频时钟输入和提供多色滤波阵列选择。封装和现状:AR0231AT采用11 mm x 10 mm iBGA-121封装,现提供工程样品。工作温度范围为-40℃至105℃(环境温度),将完全通过AEC-Q100认证。
标签: 图像传感器
上传时间: 2022-06-27
上传用户:XuVshu
Neural networks : an introduction / B. Muller, J.Reinhardt. 此书的配套软盘
标签: B. introduction Reinhardt networks
上传时间: 2013-12-13
上传用户:wyc199288
Bing is a point-to-point bandwidth measurement tool (hence the b ), based on ping. Bing determines the real (raw, as opposed to available or average) throughput on a link by measuring ICMP echo requests roundtrip times for different packet sizes for each end of the link
标签: Bing point-to-point measurement determines
上传时间: 2015-09-15
上传用户:lgnf
This I develops based on the B/S structure student managementsystem management system, hoped brings a help to the novice
标签: managementsystem management structure develops
上传时间: 2014-01-07
上传用户:钓鳌牧马
Artificial Intelligence Neural Networks Algorithms Applications and Programming Techniques Addison Wesley,
标签: Applications Intelligence Programming Artificial
上传时间: 2014-01-15
上传用户:yoleeson
《Neural Network Design》 Martin T. Hagan, Howard B. Demuth, Mark H. Beale 一书中相关matlab演示程序软件包。对于学习很有参考。
上传时间: 2016-03-19
上传用户:zhanditian
the load forecast based on Neural Networks,use the MATLAB
标签: the forecast Networks Neural
上传时间: 2016-12-21
上传用户:iswlkje