//下面是画圆的程序, //画线、画圆、画各种曲线其实都很简单,归根到底就是x、y的二元方程嘛 //对算法感兴趣的话建议去找本《计算机图形学》看看,不是卖关子哦。实在是几句话说不清除,呵呵 // ---------------------------------------------- //字节 void circleDot(unsigned char x,unsigned char y,char xx,char yy)//内部函数,对称法画圆的8个镜像点 {//对称法画圆的8个镜像点
标签: 程序
上传时间: 2014-01-07
上传用户:秦莞尔w
实验题目:Hermite插值多项式 相关知识:通过n+1个节点的次数不超过2n+1的Hermite插值多项式为: 其中,Hermite插值基函数 数据结构:三个一维数组或一个二维数组 算法设计:(略) 编写代码:(略) 实验用例: 已知函数y=f(x)的一张表(其中 ): x 0.10 0.20 0.30 0.40 0.50 y 0.904837 0.818731 0.740818 0.670320 0.606531 m -0.904837 -0.818731 -0.740818 -0.670320 -0.606531 x 0.60 0.70 0.80 0.90 1.00 y 0.548812 0.496585 0.449329 0.406570 0.367879 m -0.548812 -0.496585 -0.449329 -0.406570 -0.367879 实验用例:利用Hermite插值多项式 求被插值函数f(x)在点x=0.55处的近似值。建议:画出Hermite插值多项式 的曲线。
上传时间: 2013-12-24
上传用户:czl10052678
Batch version of the back-propagation algorithm. % Given a set of corresponding input-output pairs and an initial network % [W1,W2,critvec,iter]=batbp(NetDef,W1,W2,PHI,Y,trparms) trains the % network with backpropagation. % % The activation functions must be either linear or tanh. The network % architecture is defined by the matrix NetDef consisting of two % rows. The first row specifies the hidden layer while the second % specifies the output layer. %
标签: back-propagation corresponding input-output algorithm
上传时间: 2016-12-27
上传用户:exxxds
This function calculates Akaike s final prediction error % estimate of the average generalization error. % % [FPE,deff,varest,H] = fpe(NetDef,W1,W2,PHI,Y,trparms) produces the % final prediction error estimate (fpe), the effective number of % weights in the network if the network has been trained with % weight decay, an estimate of the noise variance, and the Gauss-Newton % Hessian. %
标签: generalization calculates prediction function
上传时间: 2014-12-03
上传用户:maizezhen
% Train a two layer neural network with the Levenberg-Marquardt % method. % % If desired, it is possible to use regularization by % weight decay. Also pruned (ie. not fully connected) networks can % be trained. % % Given a set of corresponding input-output pairs and an initial % network, % [W1,W2,critvec,iteration,lambda]=marq(NetDef,W1,W2,PHI,Y,trparms) % trains the network with the Levenberg-Marquardt method. % % The activation functions can be either linear or tanh. The % network architecture is defined by the matrix NetDef which % has two rows. The first row specifies the hidden layer and the % second row specifies the output layer.
标签: Levenberg-Marquardt desired network neural
上传时间: 2016-12-27
上传用户:jcljkh
This function calculates Akaike s final prediction error % estimate of the average generalization error for network % models generated by NNARX, NNOE, NNARMAX1+2, or their recursive % counterparts. % % [FPE,deff,varest,H] = nnfpe(method,NetDef,W1,W2,U,Y,NN,trparms,skip,Chat) % produces the final prediction error estimate (fpe), the effective number % of weights in the network if it has been trained with weight decay, % an estimate of the noise variance, and the Gauss-Newton Hessian. %
标签: generalization calculates prediction function
上传时间: 2016-12-27
上传用户:脚趾头
【欧拉算法】 微分方程的本质特征是方程中含有导数项,数值解法的第一步就是...欧拉(Euler)算法是数值求解中最基本、最简单的方法,但其求解精度较低,一般不在...对于常微分方程: dy/dx=f(x,y),x∈[a,b] y(a)=y0 可以将区
上传时间: 2014-01-09
上传用户:www240697738
#include "iostream.h" #include "iomanip.h" #define N 20 //学习样本个数 #define IN 1 //输入层神经元数目 #define HN 8 //隐层神经元数目 #define ON 1 //输出层神经元数目 double P[IN] //单个样本输入数据 double T[ON] //单个样本教师数据 double W[HN][IN] //输入层至隐层权值 double V[ON][HN] //隐层至输出层权值 double X[HN] //隐层的输入 double Y[ON] //输出层的输入 double H[HN] //隐层的输出
标签: define include iostream iomanip
上传时间: 2014-01-01
上传用户:凌云御清风
三维曲线曲面比较演示系统程序设计 设计一个图形用户界面(GUI)演示常见的三维函数图形,至少包含“三维绘图” 、“选项” 、“退出”等菜单,三维绘图的包括:参数方程x=e-t/20cos(t), y= e-t/20sin(t),z=t其中t 为0到2π、参数方程x=t,y=t2,z=t3其中t为0到1之间(在同一图形界面中分别绘制它们的三维曲面和三维曲线图)。“选项”菜单主要包括:网格开关,图例开关,坐标边框开关,色度空间选择菜单,曲线颜色菜单。
上传时间: 2017-01-10
上传用户:hasan2015
Overview Input Clock = 24Mhz Preview VGA 15fps @ 60Hz VGA 12.5fps @ 50Hz Capture VGA 15fps @ 60Hz VGA 12.5fps @ 50Hz Output Format YCbCr 4:2:2 (ITU 656) YCbCr to RGB conversion R = Y + (351*(Cr – 128)) >> 8 G = Y – (179*(Cr – 128) + 86*(Cb – 128))>>8 B = Y + (443*(Cb – 128)) >> 8
上传时间: 2013-12-24
上传用户:远远ssad