虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

VAP机器学习<b>60</b>讲

  • 学习OpenCV(中文版)和源码

    计算机视觉是图像处理的基础,OPENCV是一个开源的计算机视觉库。它为图像处理,模式识别,三维重建,物体跟踪,机器学习提供各种各样的算法。资源包括文档和源码

    标签: opencv

    上传时间: 2022-05-22

    上传用户:

  • Matlab 深度学习简介

    MATLAB深度学习简介深度学习是机器学习的一个类型,该类型的模型直接从图像、文本或声音中学 习执行分类任务。通常使用神经网络架构实现深度学习。“深度”一词是指网络 中的层数 — 层数越多,网络越深。传统的神经网络只包含 2 层或 3 层, 而深度网络可能有几百层。下面只是深度学习发挥作用的几个例子:• 无人驾驶汽车在接近人行横道线时减速。• ATM 拒收假钞。• 智能手机应用程序即时翻译国外路标。深度学习特别适合鉴别应用场景,比如人脸辨识、 文本翻译、语音识别以及高级驾驶辅助系统(包括 车道分类和交通标志识别)。简言之,精确。先进的工具和技术极大改进了深度学习算法,达到了 很高的水平,在图像分类上能够超越人类,能打败世界最优秀的围棋 选手,还能实现语音控制助理功能,如 Amazon Echo® 和 Google Home,可用来查找和下载您喜欢的新歌。如果您刚接触深度学习,快速而轻松的入门方法是使用现有网络, 比如 AlexNet,用一百多万张图像训练好的 CNN。AlexNet 最常用于 图像分类。它可将图像划分为 1000 个不同的类别,包括键盘、鼠标、 铅笔和其他办公设备,以及各个品种的狗、猫、马和其他动物。

    标签: Matlab

    上传时间: 2022-06-10

    上传用户:

  • 从感知机到深度神经网络带你入坑深度学习

    从感知机到深度神经网络带你入坑深度学习机器学习工程师Adi Chris最近学习完吴恩达在Coursera上的最新课程后,决定写篇博客来记录下自己对这一领域的理解。他建议通过这种方式可以有效地深入理解一个学习主题。除此之外,也希望这篇博客可以帮助到那些有意入坑的朋友。言归正传。在我正式介绍深度学习是什么东西之前,我想先引入一个简单的例子,借以帮助我们理解为什么需要深度神经网络。同时,本文附有使用深度神经网络模型求解异或(XOR)问题的代码,发布在GitHub上。异或问题何为异或问题?对于给定的两个上进制输入,我们通过异或逻辑门得到一个预测输出,这 过程 为异或问题。注意,输入不相等时输出为1,否则为0。1展示了异或函数的所有可能的输出结束:

    标签: 深度神经网络

    上传时间: 2022-06-19

    上传用户:canderile

  • 深度神经网络的快速学习算法

    神经网络是机器学习的重要分支,是智能计算的一个主流研究方向,长期受到众多科学家的关注和研究,它植根于很多学科,结合了数学、统计学、物理学、计算机科学和工程学.已经发现,它能够解决一些传统意义上很难解决的问题,也为一些问题的解决提供了全新的想法.在传统的研究成果中,有很多表达数据的统计模型,但大都是比较简单或浅层的模型,在复杂数据的学习上通常不能获得好的学习效果.深度神经网络采用的则是一种深度、复杂的结构,具有更加强大的学习能力,目前深度神经网络已经在图像识别、语音识别等应用上取得了显著的成功.这使得这项技术受到了学术界和工业界的广泛重视,正在为机器学习领域带来一个全新的研究浪潮.

    标签: 深度神经网络

    上传时间: 2022-06-19

    上传用户:shjgzh

  • 深度学习入门书籍中文版

    该书的作者是来自 Y Combinator Research 的研究员 Michael Nielsen,他也是一位量子物理学家、科学作家、计算机编程研究人员。他的个人主页是:Neural networks and deep learningneuralnetworksanddeeplearning.com书籍介绍 这是我个人以为目前最好的神经网络与机器学习入门资料之一。内容非常浅显易懂,很多数学密集的区域作者都有提示。全书贯穿的是 MNIST 手写数字的识别问题,每个模型和改进都有详细注释的代码。非常适合用来入门神经网络和深度学习! 全书共分为六章,目录如下: 第一章:使用神经网络识别手写数字 第二章:反向传播算法如何工作 第三章:改进神经网络的学习方法 第四章:神经网络可以计算任何函数的可视化证明 第五章:深度神经网络为何很难训练 第六章:深度学习 《Neural Network and Deep Learning》这本书的目的是帮助读者掌握神经网络的核心概念,包括现代技术的深度学习。在完成这本书的学习之后,你将使用神经网络和深度学习来解决复杂模式识别问题。你将为使用神经网络和深度学习打下基础,来攻坚你自己设计中碰到的问题。 本书一个坚定的信念,是让读者更好地去深刻理解神经网络和深度学习,如果你很好理解了核心理念,你就可以很快地理解其他新的推论。这就意味着这本书的重点不是作为一个如何使用一些特定神经网络库的教程。仅仅学会如何使用库,虽然这也许能很快解决你的问题,但是,如果你想理解神经网络中究竟发生了什么,如果你想要了解今后几年都不会过时的原理,那么只是学习些热?的程序库是不够的。你需要领悟让神经网络工作的原理。

    标签: 深度学习

    上传时间: 2022-07-24

    上传用户:

  • 深度学习中文电子书籍资料合集

    计算智能.人工神经网络·模糊系统·进化计_12531.pdf 30.1M 斯坦福大学-深度学习基础教程.pdf 9.4M [游戏人工智能编程案例精粹].(Programming.Game.AI.by.Example).(美)Mat.Buckland.扫描版.pdf 54.4M 深度学习基础教程.pdf 9.5M [模式识别与智能计算:MATLAB技术实现(第2版)].杨淑莹.扫描版.pdf 29.3M 机器学习:实用案例解析(中文版,带完整书签).pdf 34.7M .DS_Store 6KB python 学习资料 .pdf 747KB 深度学习的昨天、今天和明天.pdf 976KB 【试读】《自然计算:DNA、量子比特和智能机器的未来》前言+目录+第1章.pdf 4.6M 百度深度学习-CCF-2013Sep.pptx 28.7M 机器学习与数据挖掘方法和应用.pdf 17.6M 深度学习(最全的中文版)_2017年新书.pdf 30.3M 机器学习与数据挖掘方法和应用(经典).pdf 12M 模式识别与智能计算-matlab技术实现.pdf 27.9M 欧盟在多领域的物联网技术应用需求.rar 1.1M 伯克利大学机器学习(Practical Machine Learning).rar 35.8M 深度学习结构和算法比较分析.pdf 1.7M 机器学习实战及配套代码.rar 39.5M 机器学习实践经验指导.pdf 449KB 余凯_深度学习的昨天今天和明天.pdf 913KB 浅谈深度学习_肖达.pdf 10.2M 人工智能原理与应用——专家系统、机器学习、面向对象的方法_10184566.pdf 9.8M 机器学习与概率图模型_王立威.pdf 1.8M 机器学习十大算法.pdf 4.9M 百度深度学习进展介绍.ppt 18M 机器学习部分课后习题答案.zip 651KB 深度学习——机器学习领域的新热点.pdf 4.4M 科研立项的极客之道.ppt 11.2M

    标签: Visual 2000 电力 出版社

    上传时间: 2013-07-02

    上传用户:eeworm

  • 深度学习 deep learning 经典书籍教程合集,共11本

    图像配准理论及算法研究.pdf cnn_tutorial.pdf Deep Learning(深度学习)学习笔记整理.pdf 00.神经⽹络与深度学习.pdf deep learning.pdf 深度学习方法及应用PDF高清晰完整版.pdf 斯坦福大学-深度学习基础教程.pdf 深度学习基础教程.pdf deep+learning.pdf 深度学习 中文版 ---文字版.pdf 神经网络与机器学习(原书第3版).pdf

    标签: 低压 电工 实用技术 问答

    上传时间: 2013-06-07

    上传用户:eeworm

  • 人工智能14本

    ·人工智能及其应用(蔡自兴).pdf人工智能基础.pdf人工智能基础(高教).pdf人工智能的原理与方法.pdf人工智能导论.pdf人工智能:复杂问题求解的结构和策略.pdf人工智能.pdf人工智能(日).pdf人工智能(尼尔逊).pdf人工免疫系统原理与应用.pdf机器学习与数据挖掘方法和应用(经典).pdf高级人工智能.pdf定性推理方法.pdf次协调逻辑与人工智能.pdf

    标签: 人工智能

    上传时间: 2013-04-24

    上传用户:xmsmh

  • 知识工程8本

    ·知识系统工程.pdf知识科学与计算科学.pdf知识工程与知识发现.pdf知识工程和知识管理.pdf知识工程.pdf世纪之交的知识工程与知识科学.pdf机器学习与知识获取.pdfRough集理论与知识获取.pdf

    标签: 知识工程

    上传时间: 2013-04-24

    上传用户:jiiszha

  • 微电脑型数学演算式隔离传送器

    特点: 精确度0.1%满刻度 可作各式數學演算式功能如:A+B/A-B/AxB/A/B/A&B(Hi or Lo)/|A|/ 16 BIT类比输出功能 输入与输出绝缘耐压2仟伏特/1分钟(input/output/power) 宽范围交直流兩用電源設計 尺寸小,穩定性高

    标签: 微电脑 数学演算 隔离传送器

    上传时间: 2014-12-23

    上传用户:ydd3625