在过程控制中,按偏差的比例(P)、积分(I)和微分(D)进行控制的PID控制器(亦称PID调节器)是应用最为广泛的一种自动控制器。
标签: 过程控制
上传时间: 2013-12-31
上传用户:dyctj
在过程控制中,按偏差的比例(P)、积分(I)和微分(D)进行控制的PID控制器(亦称PID调节器)是应用最为广泛的一种自动控制器。
标签: 过程控制
上传时间: 2013-12-31
上传用户:qilin
在过程控制中,按偏差的比例(P)、积分(I)和微分(D)进行控制的PID控制器(亦称PID调节器)是应用最为广泛的一种自动控制器。
标签: 过程控制
上传时间: 2016-09-03
上传用户:liglechongchong
在过程控制中,按偏差的比例(P)、积分(I)和微分(D)进行控制的PID控制器(亦称PID调节器)是应用最为广泛的一种自动控制器。
标签: 过程控制
上传时间: 2016-09-03
上传用户:yzy6007
在过程控制中,按偏差的比例(P)、积分(I)和微分(D)进行控制的PID控制器(亦称PID调节器)是应用最为广泛的一种自动控制器。
标签: 过程控制
上传时间: 2014-07-25
上传用户:13681659100
一被控对象 ,给定为阶跃给定,幅值为500,设计一个两维模糊PI型控制器,输入语言变量和输出语言变量均取7个值{NB,NM,NS,ZE,PS,PM,PB},模糊论域为{-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6},用matlab编程仿真研究。
标签: 对象
上传时间: 2013-12-16
上传用户:大融融rr
private double PointToAngle(Point AOrigin, Point APoint) { if (APoint.X == AOrigin.X) if (APoint.Y > AOrigin.Y) return Math.PI * 0.5f else return Math.PI * 1.5f else if (APoint.Y == AOrigin.Y) if (APoint.X > AOrigin.X) return 0 else return Math.PI else {
标签: AOrigin APoint Point PointToAngle
上传时间: 2016-10-31
上传用户:zhyiroy
private double PointToAngle(Point AOrigin, Point APoint) { if (APoint.X == AOrigin.X) if (APoint.Y > AOrigin.Y) return Math.PI * 0.5f else return Math.PI * 1.5f else if (APoint.Y == AOrigin.Y) if (APoint.X > AOrigin.X) return 0 else return Math.PI else {
标签: AOrigin APoint Point PointToAngle
上传时间: 2016-10-31
上传用户:sunjet
private double PointToAngle(Point AOrigin, Point APoint) { if (APoint.X == AOrigin.X) if (APoint.Y > AOrigin.Y) return Math.PI * 0.5f else return Math.PI * 1.5f else if (APoint.Y == AOrigin.Y) if (APoint.X > AOrigin.X) return 0 else return Math.PI else {
标签: AOrigin APoint Point PointToAngle
上传时间: 2013-12-18
上传用户:rocketrevenge
For solving the following problem: "There is No Free Lunch" Time Limit: 1 Second Memory Limit: 32768 KB One day, CYJJ found an interesting piece of commercial from newspaper: the Cyber-restaurant was offering a kind of "Lunch Special" which was said that one could "buy one get two for free". That is, if you buy one of the dishes on their menu, denoted by di with price pi , you may get the two neighboring dishes di-1 and di+1 for free! If you pick up d1, then you may get d2 and the last one dn for free, and if you choose the last one dn, you may get dn-1 and d1 for free. However, after investigation CYJJ realized that there was no free lunch at all. The price pi of the i-th dish was actually calculated by adding up twice the cost ci of the dish and half of the costs of the two "free" dishes. Now given all the prices on the menu, you are asked to help CYJJ find the cost of each of the dishes.
标签: Limit following solving problem
上传时间: 2014-01-12
上传用户:362279997