1.能实现不同的个数的矩阵连乘. 2.最后矩阵大小是8X8. 3是最优的矩阵相乘. 描 述:给定n 个矩阵{A1, A2,...,An},其中Ai与Ai+1是可乘的,i=1,2…,n-1。考察这n个矩阵的连乘积A1A2...An。矩阵A 和B 可乘的条件是矩阵A的列数等于矩阵B 的行数。若A 是一个p x q矩阵,B是一个q * r矩阵,则其乘积C=AB是一个p * r矩阵,需要pqr次数乘。
上传时间: 2013-12-04
上传用户:wang5829
Rotating shafts experience a an elliptical motion called whirl. It is important to decompose this motion into a forward and backward whil orbits. The current function makes use of two sensors to generate a bi-directional spectrogram. The method can be extended to any time-frequency distribution % % compute the forward/backward Campbell/specgtrogram % % INPUT: % y (n x 2) each column is measured from a different sensor % /////// % __ % |s1| y(:,1) % |__| % __ % / \ ________|/ % | | | s2 |/ y(:,2) % \____/ --------|/ % % Fs Sampling frequnecy % % OUTPUT: % B spectrogram/Campbel diagram % x x-axis coordinate vector (time or Speed) % y y-axis coordinate vector (frequency [Hz])
标签: experience elliptical decompose important
上传时间: 2015-06-23
上传用户:372825274
光学设计软件zemax源码: This DLL models an nular aspheric surface as described in: "Annular surfaces in annular field systems" By Jose M. Sasian Opt. eng. 36 (12) P 3401-3401 December 1997 This surface is essentially an odd aspheric surface with an offset in the aspheric terms. The sag is given by: Z = (c*r*r) / (1+(1-((1+k)*c*c*r*r))^ 1/2 ) + a*(r-q)^2 + b*(r-q)^3 + c*(r-q)^4 + ... Note the terms a, b, c, ... have units of length to the -1, -2, -3, ... power.
标签: described aspheric surfaces Annular
上传时间: 2014-01-08
上传用户:yyyyyyyyyy
crc任意位生成多项式 任意位运算 自适应算法 循环冗余校验码(CRC,Cyclic Redundancy Code)是采用多项式的 编码方式,这种方法把要发送的数据看成是一个多项式的系数 ,数据为bn-1bn-2…b1b0 (其中为0或1),则其对应的多项式为: bn-1Xn-1+bn-2Xn-2+…+b1X+b0 例如:数据“10010101”可以写为多项式 X7+X4+X2+1。 循环冗余校验CRC 循环冗余校验方法的原理如下: (1) 设要发送的数据对应的多项式为P(x)。 (2) 发送方和接收方约定一个生成多项式G(x),设该生成多项式 的最高次幂为r。 (3) 在数据块的末尾添加r个0,则其相对应的多项式为M(x)=XrP(x) 。(左移r位) (4) 用M(x)除以G(x),获得商Q(x)和余式R(x),则 M(x)=Q(x) ×G(x)+R(x)。 (5) 令T(x)=M(x)+R(x),采用模2运算,T(x)所对应的数据是在原数 据块的末尾加上余式所对应的数据得到的。 (6) 发送T(x)所对应的数据。 (7) 设接收端接收到的数据对应的多项式为T’(x),将T’(x)除以G(x) ,若余式为0,则认为没有错误,否则认为有错。
上传时间: 2014-11-28
上传用户:宋桃子
Implemented BFS, DFS and A* To compile this project, use the following command: g++ -o search main.cpp Then you can run it: ./search The input is loaded from a input file in.txt Here is the format of the input file: The first line of the input file shoud contain two chars indicate the source and destination city for breadth first and depth first algorithm. The second line of input file shoud be an integer m indicate the number of connections for the map. Following m lines describe the map, each line represents to one connection in this form: dist city1 city2, which means there is a connection between city1 and city2 with the distance dist. The following input are for A* The following line contains two chars indicate the source and destination city for A* algorithm. Then there is an integer h indicate the number of heuristic. The following h lines is in the form: city dist which means the straight-line distance from the city to B is dist.
标签: Implemented following compile command
上传时间: 2014-01-01
上传用户:lhc9102
Distribution generator Here is a simple generator which can build some distributions with given properties. Distributions generator (compile with -lm) Typical use might be: ./distributions -u -m 1 -M 10 -n 100 -s 500 Generates a distribution of 100 uniform random numbers between 1 and 10, such that the sum of numbers is 500. ./distributions -p -2.2 -m 1 -M 100 -n 200 -s 500 Idem with 200 numbers between 1 and 100 following a power law with exponent -
标签: generator distributions Distribution simple
上传时间: 2014-01-27
上传用户:sammi
C# BigInteger class. BigInteger.cs is a csharp program. It is the BIgInteger class. It has methods: abs() , FermatLittleTest(int confidence) ,gcd(BigInteger bi) , genCoPrime(int bits, Random rand) , genPseudoPrime(int bits, int confidence, Random rand) , genRandomBits(int bits, Random rand) , isProbablePrime(int confidence) , isProbablePrime() , Jacobi(BigInteger a, BigInteger b) , LucasSequence(BigInteger P, BigInteger Q, BigInteger k, BigInteger n) ,max(BigInteger bi) , min(BigInteger bi) , modInverse(BigInteger modulus) , RabinMillerTest(int confidence) ,
标签: BigInteger class BIgInteger program
上传时间: 2013-12-23
上传用户:ynzfm
假定已经有许多应用采用了程序1 - 1 5中所定义的C u r r e n c y类,现在我们想要对C u r r e n c y类 的描述进行修改,使其应用频率最高的两个函数A d d和I n c r e m e n t可以运行得更快,从而提高应 用程序的执行速度。由于用户仅能通过p u b l i c部分所提供的接口与C u r r e n c y类进行交互,
上传时间: 2015-10-11
上传用户:BIBI
crc任意位生成多项式 任意位运算 自适应算法 循环冗余校验码(CRC,Cyclic Redundancy Code)是采用多项式的 编码方式,这种方法把要发送的数据看成是一个多项式的系数 ,数据为bn-1bn-2…b1b0 (其中为0或1),则其对应的多项式为: bn-1Xn-1+bn-2Xn-2+…+b1X+b0 例如:数据“10010101”可以写为多项式 X7+X4+X2+1。 循环冗余校验CRC 循环冗余校验方法的原理如下: (1) 设要发送的数据对应的多项式为P(x)。 (2) 发送方和接收方约定一个生成多项式G(x),设该生成多项式 的最高次幂为r。 (3) 在数据块的末尾添加r个0,则其相对应的多项式为M(x)=XrP(x) 。(左移r位) (4) 用M(x)除以G(x),获得商Q(x)和余式R(x),则 M(x)=Q(x) ×G(x)+R(x)。 (5) 令T(x)=M(x)+R(x),采用模2运算,T(x)所对应的数据是在原数 据块的末尾加上余式所对应的数据得到的。 (6) 发送T(x)所对应的数据。 (7) 设接收端接收到的数据对应的多项式为T’(x),将T’(x)除以G(x) ,若余式为0,则认为没有错误,否则认为有错
上传时间: 2014-01-16
上传用户:hphh
代入法的启发示搜索 我的代码实现是:按照自然语言各字母出现频率的大小从高到低(已经有人作国统计分析了)先生成一张字母出现频率统计表(A)--------(e),(t,a,o,i,n,s,h,r),(d,l),(c,u,m,w,f,g,y,p,b),(v,k,j,x,q,z) ,再对密文字母计算频率,并按频率从高到低生成一张输入密文字母的统计表(B),通过两张表的对应关系,不断用A中的字母去替换B中的字母,搜索不成功时就回退,在这里回朔是一个关键。
上传时间: 2015-10-24
上传用户:wanqunsheng