PRODUCT DESCRIPTION The AD810 is a composite and HDTV compatible, current feedback, video operational amplifier, ideal for use in systems such as multimedia, digital tape recorders and video cameras. The 0.1 dB flatness specification at bandwidth of 30 MHz (G = +2) and the differential gain and phase of 0.02% and 0.04° (NTSC) make the AD810 ideal for any broadcast quality video system. All these specifications are under load conditions of 150 Ω (one 75 Ω back terminated cable). The AD810 is ideal for power sensitive applications such as video cameras, offering a low power supply current of 8.0 mA max. The disable feature reduces the power supply current to only 2.1 mA, while the amplifier is not in use, to conserve power. Furthermore the AD810 is specified over a power supply range of ±5 V to ±15 V.
上传时间: 2020-04-19
上传用户:su1254
transimpedance linearization circuitry. This allows it to drive video loads with excellent differential gain and phase perfor mance on only 50 mW of power. The AD8001 is a current feedback amplifier and features gain flatness of 0.1 dB to 100 MHz while offering differential gain and phase error of 0.01% and 0.025°. This makes the AD8001 ideal for professional video electronics such as cameras and video switchers. Additionally, the AD8001’s low distortion and fast settling make it ideal for buffer high-speed A-to-D converters. The AD8001 offers low power of 5.5 mA max (VS = ±5 V) and can run on a single +12 V power supply, while being capable of delivering over 70 mA of load current. These features make this amplifier ideal for portable and battery-powered applications where size and power are critical. The outstanding bandwidth of 800 MHz along with 1200 V/µs of slew rate make the AD8001 useful in many general purpose high-speed applications where dual power supplies of up to ±6 V and single supplies from 6 V to 12 V are needed. The AD8001 is available in the industrial temperature range of –40°C to +85°C.
上传时间: 2020-04-21
上传用户:su1254
The Internet of Things is considered to be the next big opportunity, and challenge, for the Internet engineering community, users of technology, companies and society as a whole. It involves connecting embedded devices such as sensors, home appliances, weather stations and even toys to Internet Protocol (IP) based networks. The number of IP-enabled embedded devices is increasing rapidly, and although hard to estimate, will surely outnumber the number of personal computers (PCs) and servers in the future. With the advances made over the past decade in microcontroller,low-power radio, battery and microelectronic technology, the trend in the industry is for smart embedded devices (called smart objects) to become IP-enabled, and an integral part of the latest services on the Internet. These services are no longer cyber, just including data created by humans, but are to become very connected to the physical world around us by including sensor data, the monitoring and control of machines, and other kinds of physical context. We call this latest frontier of the Internet, consisting of wireless low-power embedded devices, the Wireless Embedded Internet. Applications that this new frontier of the Internet enable are critical to the sustainability, efficiency and safety of society and include home and building automation, healthcare, energy efficiency, smart grids and environmental monitoring to name just a few.
标签: Embedded Internet Wireless 6LoWPAN The
上传时间: 2020-05-26
上传用户:shancjb
This book gives a comprehensive overview of the technologies for the advances of mobile radio access networks. The topics covered include linear transmitters, superconducting filters and cryogenic radio frequency (RF) front head, radio over fiber, software radio base stations, mobile terminal positioning, high speed downlink packet access (HSDPA), multiple antenna systems such as smart antennas and multiple input and multiple output (MIMO) systems, orthogonal frequency division multiplexing (OFDM) systems, IP-based radio access networks (RAN), autonomic networks, and ubiquitous networks.
标签: Advances Networks Access Mobile Radio in
上传时间: 2020-05-26
上传用户:shancjb
Traditional modulation methods adopted by space agencies for transmit- ting telecommand and telemetry data have incorporated subcarriers as a sim- ple means of separating different data types as well ensuring no overlap between the radio frequency (RF) carrier and the modulated data’s frequency spectra.
标签: Bandwidth-Efficient Modulation Digital
上传时间: 2020-05-26
上传用户:shancjb
The growing interest for high data rate wireless communications over the last few decades gave rise to the emergence of a number of wideband wireless systems. The resulting scarcity of frequency spectrum has been forcing wireless system designers to develop methods that will push the spectral efficiency to its limit.
标签: Algorithms Baseband Receiver
上传时间: 2020-05-26
上传用户:shancjb
Emerging technologies such as WiFi and WiMAX are profoundly changing the landscape of wireless broadband. As we evolve into future generation wireless networks, a primary challenge is the support of high data rate, integrated multi- media type traffic over a unified platform. Due to its inherent advantages in high-speed communication, orthogonal frequency division multiplexing (OFDM) has become the modem of choice for a number of high profile wireless systems (e.g., DVB-T, WiFi, WiMAX, Ultra-wideband).
标签: Broadband Wireless Networks
上传时间: 2020-05-26
上传用户:shancjb
The new digital radio system DAB (Digital Audio Broadcasting, nowadays often called Digital Radio) is a very innovative and universal multimedia broadcast system which will replace the existing AM and FM audio broadcast services in many parts of the world in the future. It was developed in the 1990s by the Eureka 147/DAB project. DAB is very well suited for mobile reception and provides very high robustness against multipath reception. It allows use of single frequency networks (SFNs) for high frequency efficiency.
标签: Broadcasting Principles Digital Audio
上传时间: 2020-05-27
上传用户:shancjb
The design and manufacturing of wireless radio frequency (RF) transceivers has developed rapidly in recent ten yeas due to rapid development of RF integrated circuits and the evolution of high-speed digital signal processors (DSP). Such high speed signal processors, in conjunction with the development of high resolution analog to digital converters and digital to analog converters, has made it possible for RF designers to digitize higher intermediate frequencies, thus reducing the RF section and enhancing the overall performance of the RF section.
标签: Transceivers Wireless Digital
上传时间: 2020-05-27
上传用户:shancjb
The first Third Generation Partnership Project (3GPP) Wideband Code Division Multiple Access (WCDMA) networks were launched during 2002. By the end of 2005 there were 100 open WCDMA networks and a total of over 150 operators having frequency licenses for WCDMA operation. Currently, the WCDMA networks are deployedinUniversalMobileTelecommunicationsSystem(UMTS)bandaround2GHz in Europe and Asia including Japan and Korea. WCDMA in America is deployed in the existing 850 and 1900 spectrum allocations while the new 3G band at 1700/2100 is expected to be available in the near future. 3GPP has defined the WCDMA operation also for several additional bands, which are expected to be taken into use during the coming years.
标签: HSDPAHSUPA Access Speed Radio UMTS High for
上传时间: 2020-05-27
上传用户:shancjb