虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

LOOPED-<b>Code</b>

  • keil使用笔记

    keil 使用笔记:在Memory窗口上输入address_type:address才能看到正确地址的变量debug~perfermance analyzer加入要察看的模块名称,然后view~perfermance analyzer window 可以察看各个模块运行时间①Display address_type:address B:Bit address C:Code Memory Bx:Code Bank D D:80H 命令可以查看特殊寄存器 data D I:0 命令可以查看内部RAM数据iData; D X:0 命令可以查看外部RAM数据xData; ②R1 //显示R1 register ~R1 //显示变量R1 R1 = R7 //对寄存器Rx操作R1 = --R7 R1 = 0x20 ③main //显示main()的开始地址d main //显示main()的代码④向RAM.ROM中写数据Enter data_type address_type:address expr,expr.... data_type:int char double float long E char data:0x20 1,2,3,4 //向data区0x20开始的地址写1,2,3,4 变量放在RAM的30H,要把定义放在main前面!另外特别注意,内部RAM通常供C程序存放中间变量等,所以一定要看看编译后的程序中是否存在存储单元冲突的情况,比如如果程序中 使用了别的寄存器组的话,08-1FH单元就不能用了unsigned long data i _at_ 0x30

    标签: keil 使用笔记

    上传时间: 2013-11-05

    上传用户:dongqiangqiang

  • mp3设计程序资料

    mp3设计程序资料,采用c语言编写。 README file for yampp-3 source code 2001-05-27 This is the current state of the yampp-3 source code, 2001-05-27. This code is intended to run on Rev. B of the yampp-3 PCB, but can ofcourse be used on compatible systems as well. It still uses the "old" song selection system as the yampp-2. However, the disk handling routines has improved a lot and the obviosly, the new VS1001 handling has been put in. The codesize is almost at it s maximum at 1F40 bytes. A .ROM file is included if you don t have the compiler set up. For now, the documentation is in the code

    标签: mp3 设计程序

    上传时间: 2015-04-13

    上传用户:小码农lz

  • 十部经典算法合集 .chm Fundamentals of Data Structures by Ellis Horowitz and Sartaj Sahni PREFACE C

    十部经典算法合集 .chm Fundamentals of Data Structures by Ellis Horowitz and Sartaj Sahni PREFACE CHAPTER 1: INTRODUCTION CHAPTER 2: ARRAYS CHAPTER 3: STACKS AND QUEUES CHAPTER 4: LINKED LISTS CHAPTER 5: TREES CHAPTER 6: GRAPHS CHAPTER 7: INTERNAL SORTING CHAPTER 8: EXTERNAL SORTING CHAPTER 9: SYMBOL TABLES CHAPTER 10: FILES APPENDIX A: SPARKS APPENDIX B: ETHICAL CODE IN INFORMATION PROCESSING APPENDIX C: ALGORITHM INDEX BY CHAPTER

    标签: Fundamentals Structures Horowitz PREFACE

    上传时间: 2015-05-19

    上传用户:维子哥哥

  • crc任意位生成多项式 任意位运算 自适应算法 循环冗余校验码(CRC

    crc任意位生成多项式 任意位运算 自适应算法 循环冗余校验码(CRC,Cyclic Redundancy Code)是采用多项式的 编码方式,这种方法把要发送的数据看成是一个多项式的系数 ,数据为bn-1bn-2…b1b0 (其中为0或1),则其对应的多项式为: bn-1Xn-1+bn-2Xn-2+…+b1X+b0 例如:数据“10010101”可以写为多项式 X7+X4+X2+1。 循环冗余校验CRC 循环冗余校验方法的原理如下: (1) 设要发送的数据对应的多项式为P(x)。 (2) 发送方和接收方约定一个生成多项式G(x),设该生成多项式 的最高次幂为r。 (3) 在数据块的末尾添加r个0,则其相对应的多项式为M(x)=XrP(x) 。(左移r位) (4) 用M(x)除以G(x),获得商Q(x)和余式R(x),则 M(x)=Q(x) ×G(x)+R(x)。 (5) 令T(x)=M(x)+R(x),采用模2运算,T(x)所对应的数据是在原数 据块的末尾加上余式所对应的数据得到的。 (6) 发送T(x)所对应的数据。 (7) 设接收端接收到的数据对应的多项式为T’(x),将T’(x)除以G(x) ,若余式为0,则认为没有错误,否则认为有错。

    标签: crc CRC 多项式 位运算

    上传时间: 2014-11-28

    上传用户:宋桃子

  • The book "The Finite Difference Time Domain for Electromagnetics" by Karl Kunz and Raymond Luebbers,

    The book "The Finite Difference Time Domain for Electromagnetics" by Karl Kunz and Raymond Luebbers, CRC Press, 1993, contains an FDTD code and output files in Appendix B. The same code and output files are contained in this directory.

    标签: Electromagnetics Difference The Luebbers

    上传时间: 2013-12-29

    上传用户:chongcongying

  • palm编成,这种书很少,有兴趣看看 Title: Palm Programming: The Developer s Guide URL: http://safari.oreilly.com/J

    palm编成,这种书很少,有兴趣看看 Title: Palm Programming: The Developer s Guide URL: http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=rank&sortOrder=desc&view=book&xmlid=1-56592-525-4&open=false&srchText=palm+programming&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&page=0 ISBN: 1-56592-525-4 Author: Julie McKeehan/ Neil Rhodes Publisher: O Reilly Page: 478 Edition: 1st edition (December 1998) Catalog: PDA programming / Palm Format: pdf Size: 2.06M Supplier: Summary: Emerging as the bestselling hand-held computers of all time, PalmPilots have spawned intense developer activity and a fanatical following. Used by Palm in their developer training, this tutorial-style book shows intermediate to experienced C programmers how to build a Palm application from the ground up. Includes a CD-ROM with source code and third-party developer tools

    标签: Programming Developer oreilly safari

    上传时间: 2013-12-10

    上传用户:litianchu

  • crc任意位生成多项式 任意位运算 自适应算法 循环冗余校验码(CRC

    crc任意位生成多项式 任意位运算 自适应算法 循环冗余校验码(CRC,Cyclic Redundancy Code)是采用多项式的 编码方式,这种方法把要发送的数据看成是一个多项式的系数 ,数据为bn-1bn-2…b1b0 (其中为0或1),则其对应的多项式为: bn-1Xn-1+bn-2Xn-2+…+b1X+b0 例如:数据“10010101”可以写为多项式 X7+X4+X2+1。 循环冗余校验CRC 循环冗余校验方法的原理如下: (1) 设要发送的数据对应的多项式为P(x)。 (2) 发送方和接收方约定一个生成多项式G(x),设该生成多项式 的最高次幂为r。 (3) 在数据块的末尾添加r个0,则其相对应的多项式为M(x)=XrP(x) 。(左移r位) (4) 用M(x)除以G(x),获得商Q(x)和余式R(x),则 M(x)=Q(x) ×G(x)+R(x)。 (5) 令T(x)=M(x)+R(x),采用模2运算,T(x)所对应的数据是在原数 据块的末尾加上余式所对应的数据得到的。 (6) 发送T(x)所对应的数据。 (7) 设接收端接收到的数据对应的多项式为T’(x),将T’(x)除以G(x) ,若余式为0,则认为没有错误,否则认为有错

    标签: crc CRC 多项式 位运算

    上传时间: 2014-01-16

    上传用户:hphh

  • BG码转换程序是一个二进制码(Binary

    BG码转换程序是一个二进制码(Binary,简称 B码)与格雷码(Gray Code,简称G码)相互转换的软件.

    标签: Binary 转换 程序 二进制码

    上传时间: 2014-12-19

    上传用户:hgy9473

  • DirectX not only provides fast access to the hardware and therefore incredibly speedy performance, b

    DirectX not only provides fast access to the hardware and therefore incredibly speedy performance, but it also makes it much easier for hardware developers to produce new devices that work well in the Windows environment. The DirectX APIs take away the necessity of writing your own low-level, device-specific code to access hardware such as the display adapter and network card, making it much easier for you to write programs that take full advantage of the computer s multimedia capabilities.

    标签: performance incredibly therefore hardware

    上传时间: 2016-02-16

    上传用户:秦莞尔w

  • The "GEE! It s Simple" package illustrates Gaussian elimination with partial pivoting, which produce

    The "GEE! It s Simple" package illustrates Gaussian elimination with partial pivoting, which produces a factorization of P*A into the product L*U where P is a permutation matrix, and L and U are lower and upper triangular, respectively. The functions in this package are accurate, but they are far slower than their MATLAB equivalents (x=A\b, [L,U,p]=lu(A), and so on). They are presented here merely to illustrate and educate. "Real" production code should use backslash and lu, not this package.

    标签: illustrates elimination Gaussian pivoting

    上传时间: 2016-11-09

    上传用户:wang5829