本程序是用c++实现的多功能文本编辑器,它除了可以实现一般文本的编辑功能,还增加了保存文档a(save), 转为大写m(large),改为小写k(small),复制段j(copy),中英文转换t(language)等功能
上传时间: 2013-12-23
上传用户:wuyuying
数据挖掘常用的算法,包括id3,k均值,FCM,SVM,CART五个常用的算法,是用matlab编写的。
上传时间: 2015-04-23
上传用户:exxxds
盒维数MATLAB计算程序。%根据计盒维数原理编写了求一维曲线分形维数的matlab程序 function D=FractalDim(y,cellmax) %求输入一维信号的计盒分形维数 %y是一维信号 %cellmax:方格子的最大边长,可以取2的偶数次幂次(1,2,4,8...),取大于数据长度的偶数 %D是y的计盒维数(一般情况下D>=1),D=lim(log(N(e))/log(k/e)),
标签: FractalDim function cellmax MATLAB
上传时间: 2015-04-23
上传用户:liuchee
模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。根据Metropolis准则,粒子在温度T时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann常数。用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对当前解重复“产生新解→计算目标函数差→接受或舍弃”的迭代,并逐步衰减t值,算法终止时的当前解即为所得近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。退火过程由冷却进度表(Cooling Schedule)控制,包括控制参数的初值t及其衰减因子Δt、每个t值时的迭代次数L和停止条件S。
标签: 模拟退火算法
上传时间: 2015-04-24
上传用户:R50974
模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。根据Metropolis准则,粒子在温度T时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann常数。用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对当前解重复“产生新解→计算目标函数差→接受或舍弃”的迭代,并逐步衰减t值,算法终止时的当前解即为所得近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。退火过程由冷却进度表(Cooling Schedule)控制,包括控制参数的初值t及其衰减因子Δt、每个t值时的迭代次数L和停止条件S。
标签: 模拟退火算法
上传时间: 2015-04-24
上传用户:ryb
模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。根据Metropolis准则,粒子在温度T时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann常数。用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对当前解重复“产生新解→计算目标函数差→接受或舍弃”的迭代,并逐步衰减t值,算法终止时的当前解即为所得近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。退火过程由冷却进度表(Cooling Schedule)控制,包括控制参数的初值t及其衰减因子Δt、每个t值时的迭代次数L和停止条件S。
标签: 模拟退火算法
上传时间: 2014-12-19
上传用户:TRIFCT
CDMA的Matlab例程,为研究莱斯K因子影响提供一个平台,仅供参考
上传时间: 2013-12-26
上传用户:龙飞艇
数据结构算法:使用循环队列,K阶斐波那契数列的一种算法实现。
上传时间: 2014-02-04
上传用户:Shaikh
DSP编程代码,FFT算法,经典!! FFT实验 一、 理论: 公式(1)FFT运算公式 FFT并不是一种新的变换,它是离散傅立叶变换(DFT)的一种快速算法。由于我们在计算DFT时一次复数乘法需用四次实数乘法和二次实数加法;一次复数加法则需二次实数加法。每运算一个X(k)需要4N次复数乘法及2N+2(N-1)=2(2N-1)次实数加法。所以整个DFT运算总共需要4N^2次实数乘法和N*2(2N-1)=2N(2N-1)次实数加法。如此一来,计算时乘法次数和加法次数都是和N^2成正比的,当N很大时,运算量是可观的,因而需要改进对DFT的算法减少运算速度。 根据傅立叶变换的对称性和周期性,我们可以将DFT运算中有些项合并。 我们先设序列长度为N=2^L,L为整数。将N=2^L的序列x(n)(n=0,1,……,N-1),按N的奇偶分成两组,也就是说我们将一个N点的DFT分解成两个N/2点的DFT,他们又从新组合成一个如下式所表达的N点DFT: 一般来说,输入被假定为连续、合成的。当输入为纯粹的实数的时候,我们就可以利用左右对称的特性更好的计算DFT。 我们称这样的RFFT优化算法是包装算法:首先2N点实数的连续输入称为“进包”。其次N点的FFT被连续被运行。最后作为结果产生的N点的合成输出是
上传时间: 2015-04-29
上传用户:牛布牛
接法又称周期图法,它是把随机序列x(n)的N个观测数据视为一能量有限的序列,直接计算x(n)的离散傅立叶变换,得X(k),然后再取其幅值的平方,并除以N,作为序列x(n)真实功率谱的估计。
标签: 周期
上传时间: 2015-05-01
上传用户:zycidjl