Probability distribution functions. estimation - (dir) Probability distribution estimation. dsamp - Generates samples from discrete distribution. erfc2 - Normal cumulative distribution function. gmmsamp - Generates sample from Gaussian mixture model. gsamp - Generates sample from Gaussian distribution. cmeans - C-means (or K-means) clustering algorithm. mahalan - Computes Mahalanobis distance. pdfgauss - Computes probability for Gaussian distribution. pdfgmm - Computes probability for Gaussian mixture model. sigmoid - Evaluates sigmoid function.
标签: distribution Probability estimation functions
上传时间: 2016-04-28
上传用户:13188549192
This project shows the temperature on a three digit 7-segment display, it measures the temperature from -9.5 to 99 degrees Celcius in 0.5 C steps, or from 0 to 210 degrees Fahrenheit in 1.0 degrees steps. Because of the LED display the temperature is also readable in the dark.
标签: temperature the measures project
上传时间: 2017-04-16
上传用户:xuanjie
将魔王的语言抽象为人类的语言:魔王语言由以下两种规则由人的语言逐步抽象上去的:α-〉β1β2β3…βm ;θδ1δ2…-〉θδnθδn-1…θδ1 设大写字母表示魔王的语言,小写字母表示人的语言B-〉tAdA,A-〉sae,eg:B(ehnxgz)B解释为tsaedsaeezegexenehetsaedsae对应的话是:“天上一只鹅地上一只鹅鹅追鹅赶鹅下鹅蛋鹅恨鹅天上一只鹅地上一只鹅”。(t-天d-地s-上a-一只e-鹅z-追g-赶x-下n-蛋h-恨)
上传时间: 2013-12-19
上传用户:aix008
This book has been written to support a practically oriented course in programming language translation for senior undergraduates in Computer Science. More specifically, it is aimed at students who are probably quite competent in the art of imperative programming (for example, in C++, Pascal, or Modula-2), but whose mathematics may be a little weak students who require only a solid introduction to the subject, so as to provide them with insight into areas of language design and implementation, rather than a deluge of theory which they will probably never use again students who will enjoy fairly extensive case studies of translators for the sorts of languages with which they are most familiar students who need to be made aware of compiler writing tools, and to come to appreciate and know how to use them. It will hopefully also appeal to a certain class of hobbyist who wishes to know more about how translators work.
标签: practically programming oriented language
上传时间: 2013-12-10
上传用户:我干你啊
【问题描述】 在一个N*N的点阵中,如N=4,你现在站在(1,1),出口在(4,4)。你可以通过上、下、左、右四种移动方法,在迷宫内行走,但是同一个位置不可以访问两次,亦不可以越界。表格最上面的一行加黑数字A[1..4]分别表示迷宫第I列中需要访问并仅可以访问的格子数。右边一行加下划线数字B[1..4]则表示迷宫第I行需要访问并仅可以访问的格子数。如图中带括号红色数字就是一条符合条件的路线。 给定N,A[1..N] B[1..N]。输出一条符合条件的路线,若无解,输出NO ANSWER。(使用U,D,L,R分别表示上、下、左、右。) 2 2 1 2 (4,4) 1 (2,3) (3,3) (4,3) 3 (1,2) (2,2) 2 (1,1) 1 【输入格式】 第一行是数m (n < 6 )。第二行有n个数,表示a[1]..a[n]。第三行有n个数,表示b[1]..b[n]。 【输出格式】 仅有一行。若有解则输出一条可行路线,否则输出“NO ANSWER”。
标签: 点阵
上传时间: 2014-06-21
上传用户:llandlu
实验源代码 //Warshall.cpp #include<stdio.h> void warshall(int k,int n) { int i , j, t; int temp[20][20]; for(int a=0;a<k;a++) { printf("请输入矩阵第%d 行元素:",a); for(int b=0;b<n;b++) { scanf ("%d",&temp[a][b]); } } for(i=0;i<k;i++){ for( j=0;j<k;j++){ if(temp[ j][i]==1) { for(t=0;t<n;t++) { temp[ j][t]=temp[i][t]||temp[ j][t]; } } } } printf("可传递闭包关系矩阵是:\n"); for(i=0;i<k;i++) { for( j=0;j<n;j++) { printf("%d", temp[i][ j]); } printf("\n"); } } void main() { printf("利用 Warshall 算法求二元关系的可传递闭包\n"); void warshall(int,int); int k , n; printf("请输入矩阵的行数 i: "); scanf("%d",&k); 四川大学实验报告 printf("请输入矩阵的列数 j: "); scanf("%d",&n); warshall(k,n); }
上传时间: 2016-06-27
上传用户:梁雪文以
#include "iostream" using namespace std; class Matrix { private: double** A; //矩阵A double *b; //向量b public: int size; Matrix(int ); ~Matrix(); friend double* Dooli(Matrix& ); void Input(); void Disp(); }; Matrix::Matrix(int x) { size=x; //为向量b分配空间并初始化为0 b=new double [x]; for(int j=0;j<x;j++) b[j]=0; //为向量A分配空间并初始化为0 A=new double* [x]; for(int i=0;i<x;i++) A[i]=new double [x]; for(int m=0;m<x;m++) for(int n=0;n<x;n++) A[m][n]=0; } Matrix::~Matrix() { cout<<"正在析构中~~~~"<<endl; delete b; for(int i=0;i<size;i++) delete A[i]; delete A; } void Matrix::Disp() { for(int i=0;i<size;i++) { for(int j=0;j<size;j++) cout<<A[i][j]<<" "; cout<<endl; } } void Matrix::Input() { cout<<"请输入A:"<<endl; for(int i=0;i<size;i++) for(int j=0;j<size;j++){ cout<<"第"<<i+1<<"行"<<"第"<<j+1<<"列:"<<endl; cin>>A[i][j]; } cout<<"请输入b:"<<endl; for(int j=0;j<size;j++){ cout<<"第"<<j+1<<"个:"<<endl; cin>>b[j]; } } double* Dooli(Matrix& A) { double *Xn=new double [A.size]; Matrix L(A.size),U(A.size); //分别求得U,L的第一行与第一列 for(int i=0;i<A.size;i++) U.A[0][i]=A.A[0][i]; for(int j=1;j<A.size;j++) L.A[j][0]=A.A[j][0]/U.A[0][0]; //分别求得U,L的第r行,第r列 double temp1=0,temp2=0; for(int r=1;r<A.size;r++){ //U for(int i=r;i<A.size;i++){ for(int k=0;k<r-1;k++) temp1=temp1+L.A[r][k]*U.A[k][i]; U.A[r][i]=A.A[r][i]-temp1; } //L for(int i=r+1;i<A.size;i++){ for(int k=0;k<r-1;k++) temp2=temp2+L.A[i][k]*U.A[k][r]; L.A[i][r]=(A.A[i][r]-temp2)/U.A[r][r]; } } cout<<"计算U得:"<<endl; U.Disp(); cout<<"计算L的:"<<endl; L.Disp(); double *Y=new double [A.size]; Y[0]=A.b[0]; for(int i=1;i<A.size;i++ ){ double temp3=0; for(int k=0;k<i-1;k++) temp3=temp3+L.A[i][k]*Y[k]; Y[i]=A.b[i]-temp3; } Xn[A.size-1]=Y[A.size-1]/U.A[A.size-1][A.size-1]; for(int i=A.size-1;i>=0;i--){ double temp4=0; for(int k=i+1;k<A.size;k++) temp4=temp4+U.A[i][k]*Xn[k]; Xn[i]=(Y[i]-temp4)/U.A[i][i]; } return Xn; } int main() { Matrix B(4); B.Input(); double *X; X=Dooli(B); cout<<"~~~~解得:"<<endl; for(int i=0;i<B.size;i++) cout<<"X["<<i<<"]:"<<X[i]<<" "; cout<<endl<<"呵呵呵呵呵"; return 0; }
标签: 道理特分解法
上传时间: 2018-05-20
上传用户:Aa123456789
AR0231AT7C00XUEA0-DRBR(RGB滤光)安森美半导体推出采用突破性减少LED闪烁 (LFM)技术的新的230万像素CMOS图像传感器样品AR0231AT,为汽车先进驾驶辅助系统(ADAS)应用确立了一个新基准。新器件能捕获1080p高动态范围(HDR)视频,还具备支持汽车安全完整性等级B(ASIL B)的特性。LFM技术(专利申请中)消除交通信号灯和汽车LED照明的高频LED闪烁,令交通信号阅读算法能于所有光照条件下工作。AR0231AT具有1/2.7英寸(6.82 mm)光学格式和1928(水平) x 1208(垂直)有源像素阵列。它采用最新的3.0微米背照式(BSI)像素及安森美半导体的DR-Pix™技术,提供双转换增益以在所有光照条件下提升性能。它以线性、HDR或LFM模式捕获图像,并提供模式间的帧到帧情境切换。 AR0231AT提供达4重曝光的HDR,以出色的噪声性能捕获超过120dB的动态范围。AR0231AT能同步支持多个摄相机,以易于在汽车应用中实现多个传感器节点,和通过一个简单的双线串行接口实现用户可编程性。它还有多个数据接口,包括MIPI(移动产业处理器接口)、并行和HiSPi(高速串行像素接口)。其它关键特性还包括可选自动化或用户控制的黑电平控制,支持扩频时钟输入和提供多色滤波阵列选择。封装和现状:AR0231AT采用11 mm x 10 mm iBGA-121封装,现提供工程样品。工作温度范围为-40℃至105℃(环境温度),将完全通过AEC-Q100认证。
标签: 图像传感器
上传时间: 2022-06-27
上传用户:XuVshu
Floyd-Warshall算法描述 1)适用范围: a)APSP(All Pairs Shortest Paths) b)稠密图效果最佳 c)边权可正可负 2)算法描述: a)初始化:dis[u,v]=w[u,v] b)For k:=1 to n For i:=1 to n For j:=1 to n If dis[i,j]>dis[i,k]+dis[k,j] Then Dis[I,j]:=dis[I,k]+dis[k,j] c)算法结束:dis即为所有点对的最短路径矩阵 3)算法小结:此算法简单有效,由于三重循环结构紧凑,对于稠密图,效率要高于执行|V|次Dijkstra算法。时间复杂度O(n^3)。 考虑下列变形:如(I,j)∈E则dis[I,j]初始为1,else初始为0,这样的Floyd算法最后的最短路径矩阵即成为一个判断I,j是否有通路的矩阵。更简单的,我们可以把dis设成boolean类型,则每次可以用“dis[I,j]:=dis[I,j]or(dis[I,k]and dis[k,j])”来代替算法描述中的蓝色部分,可以更直观地得到I,j的连通情况。
标签: Floyd-Warshall Shortest Pairs Paths
上传时间: 2013-12-01
上传用户:dyctj
用汇编编写的河内塔程序 将第一柱a上n-1个盘借助第二柱c移到第三柱b 把a上剩下的一个盘移到c 将n-1个盘从b借助a移到第三柱c 这三步是图示河内塔的根本方法 功能一:自己动手移动河内塔 先按左右键选择要移的盘,按箭头上键确定 再按左右键移到要的盘 如此,再根据河内塔的规则确定较好的次数step2 功能二:图示河内塔移动过程 根据河内塔的基本方法,确定图象,按任意键选下一步,(开始时输入level)
上传时间: 2015-01-10
上传用户:chenbhdt