This book evolved over the past ten years from a set of lecture notes developed while teaching the undergraduate Algorithms course at Berkeley and U.C. San Diego. Our way of teaching this course evolved tremendously over these years in a number of directions, partly to address our students' background (undeveloped formal skills outside of programming), and partly to reect the maturing of the eld in general, as we have come to see it. The notes increasingly crystallized into a narrative, and we progressively structured the course to emphasize the story line implicit in the progression of the material. As a result, the topics were carefully selected and clustered. No attempt was made to be encyclopedic, and this freed us to include topics traditionally de-emphasized or omitted from most Algorithms books.
标签: Algorithms 算法
上传时间: 2013-11-11
上传用户:JamesB
使用Nios II软件构建工具 This chapter describes the Nios® II Software Build Tools (SBT), a set of utilities and scripts that creates and builds embedded C/C++ application projects, user library projects, and board support packages (BSPs). The Nios II SBT supports a repeatable, scriptable, and archivable process for creating your software product. You can invoke the Nios II SBT through either of the following user interfaces: ■ The Eclipse™ GUI ■ The Nios II Command Shell The purpose of this chapter is to make you familiar with the internal functionality of the Nios II SBT, independent of the user interface employed.
上传时间: 2013-10-12
上传用户:china97wan
Nios II 系列处理器配置选项:This chapter describes the Nios® II Processor parameter editor in Qsys and SOPC Builder. The Nios II Processor parameter editor allows you to specify the processor features for a particular Nios II hardware system. This chapter covers the features of the Nios II processor that you can configure with the Nios II Processor parameter editor; it is not a user guide for creating complete Nios II processor systems.
上传时间: 2015-01-01
上传用户:mahone
This application note explains the XC9500™/XL/XV Boundary Scan interface anddemonstrates the software available for programming and testing XC9500/XL/XV CPLDs. Anappendix summarizes the iMPACT software operations and provides an overview of theadditional operations supported by XC9500/XL/XV CPLDs for in-system programming.
上传时间: 2013-11-01
上传用户:南国时代
The exacting technological demands created byincreasing bandwidth requirements have given riseto significant advances in FPGA technology thatenable engineers to successfully incorporate highspeedI/O interfaces in their designs. One aspect ofdesign that plays an increasingly important role isthat of the FPGA package. As the interfaces get fasterand wider, choosing the right package has becomeone of the key considerations for the systemdesigner.
上传时间: 2013-11-07
上传用户:wanghui2438
The SDI standards are the predominant standards for uncompressed digital videointerfaces in the broadcast studio and video production center. The first SDI standard,SD-SDI, allowed standard-definition digital video to be transported over the coaxial cableinfrastructure initially installed in studios to carry analog video. Next, HD-SDI wasto support high-definition video. Finally, dual link HD-SDI and 3G-SDIdoubled the bandwidth of HD-SDI to support 1080p (50 Hz and 60 Hz) and other videoformats requiring more bandwidth than HD-SDI provides.
上传时间: 2013-12-08
上传用户:liansi
Xilinx FPGAs require at least two power supplies: VCCINTfor core circuitry and VCCO for I/O interface. For the latestXilinx FPGAs, including Virtex-II Pro, Virtex-II and Spartan-3, a third auxiliary supply, VCCAUX may be needed. Inmost cases, VCCAUX can share a power supply with VCCO.The core voltages, VCCINT, for most Xilinx FPGAs, rangefrom 1.2V to 2.5V. Some mature products have 3V, 3.3Vor 5V core voltages. Table 1 shows the core voltagerequirement for most of the FPGA device families. TypicalI/O voltages (VCCO) vary from 1.2V to 3.3V. The auxiliaryvoltage VCCAUX is 2.5V for Virtex-II Pro and Spartan-3, andis 3.3V for Virtex-II.
上传时间: 2013-10-22
上传用户:aeiouetla
Prakash Rashinkar has over 15 years experience in system design and verificationof embedded systems for communication satellites, launch vehicles and spacecraftground systems, high-performance computing, switching, multimedia, and wirelessapplications. Prakash graduated with an MSEE from Regional Engineering College,Warangal, in India. He lead the team that was responsible for delivering themethodologies for SOC verification at Cadence Design Systems. Prakash is anactive member of the VSIA Functional Verification DWG. He is currently Architectin the Vertical Markets and Design Environments Group at Cadence.
上传时间: 2013-11-19
上传用户:m62383408
Abstract: Many modern industrial, medical, and commercial applications require temperature measurements in the extended temperature rangewith accuracies of ±0.3°C or better, performed with reasonable cost and often with low power consumption. This article explains how platinumresistance temperature detectors (PRTDs) can perform measurements over wide temperature ranges of -200°C to +850°C, with absolute accuracyand repeatability better than ±0.3°C, when used with modern processors capable of resolving nonlinear mathematical equation quickly and costeffectively. This article is the second installment of a series on PRTDs. For the first installment, please read application note 4875, "High-Accuracy Temperature Measurements Call for Platinum Resistance Temperature Detectors (PRTDs) and Precision Delta-Sigma ADCs."
上传时间: 2013-11-06
上传用户:WMC_geophy
ACPR (adjacent channel power ratio), AltCPR (alternatechannel power ratio), and noise are important performancemetrics for digital communication systems thatuse, for example, WCDMA (wideband code division multipleaccess) modulation. ACPR and AltCPR are bothmeasures of spectral regrowth. The power in the WCDMAcarrier is measured using a 5MHz measurement bandwidth;see Figure 1. In the case of ACPR, the total powerin a 3.84MHz bandwidth centered at 5MHz (the carrierspacing) away from the center of the outermost carrier ismeasured and compared to the carrier power. The resultis expressed in dBc. For AltCPR, the procedure is thesame, except we center the measurement 10MHz awayfrom the center of the outermost carrier.
上传时间: 2013-11-02
上传用户:maricle