【问题描述】已知线性方程组AX=B,求解该方程组。参考算法: 消去法:将列向量B加到矩阵A的最后一列,构成增广矩阵AB。对AB进行下列三种初等变换,使原矩阵A的部分的主对角线上的元素均为1,其余元素均为0,则原列向量B的部分即为X的值: 1. 将矩阵的一行乘以一个不为0的数 2. 将矩阵的一行加上另一行的倍数 3. 交换矩阵中两行的位置
上传时间: 2015-06-18
上传用户:stvnash
车牌定位---VC++源代码程序 1.24位真彩色->256色灰度图。 2.预处理:中值滤波。 3.二值化:用一个初始阈值T对图像A进行二值化得到二值化图像B。 初始阈值T的确定方法是:选择阈值T=Gmax-(Gmax-Gmin)/3,Gmax和Gmin分别是最高、最低灰度值。 该阈值对不同牌照有一定的适应性,能够保证背景基本被置为0,以突出牌照区域。 4.削弱背景干扰。对图像B做简单的相邻像素灰度值相减,得到新的图像G,即Gi,j=|Pi,j-Pi,j-1|i=0,1,…,439 j=0,1,…,639Gi,0=Pi,0,左边缘直接赋值,不会影响整体效果。 5.用自定义模板进行中值滤波 区域灰度基本被赋值为0。考虑到文字是由许多短竖线组成,而背景噪声有一大部分是孤立噪声,用模板(1,1,1,1,1)T对G进行中值滤波,能够得到除掉了大部分干扰的图像C。 6.牌照搜索:利用水平投影法检测车牌水平位置,利用垂直投影法检测车牌垂直位置。 7.区域裁剪,截取车牌图像。
上传时间: 2013-11-26
上传用户:懒龙1988
s平面中直接形式到级联形式的转换 %适合模拟滤波器的 %C为增益系数 %B为包含各bk的K乘3维实系数矩阵 %A为包含各ak的K乘3维实系数矩阵 %b为直接形式的分子多项式系数 %a为直接形式的分母多项式系数
上传时间: 2015-07-22
上传用户:sdq_123
%直接型到并联型的转换 % %[C,B,A]=dir2par(b,a) %C为当b的长度大于a时的多项式部分 %B为包含各bk的K乘2维实系数矩阵 %A为包含各ak的K乘3维实系数矩阵 %b为直接型分子多项式系数 %a为直接型分母多项式系数 %
上传时间: 2014-01-20
上传用户:lizhen9880
直接型到级联型的形式转换 % [b0,B,A]=dir2cas(b,a) %b 为直接型的分子多项式系数 %a 为直接型的分母多项式系数 %b0为增益系数 %B 为包含各bk的K乘3维实系数矩阵 %A 为包含各ak的K乘3维实系数矩阵 %
上传时间: 2013-12-30
上传用户:agent
四选一选择器,输入四个,输出1个.当NM=00时选A 当NM=01时选B 当NM=10时选C 当NM=11时选D
上传时间: 2013-12-25
上传用户:woshiayin
1.24位真彩色->256色灰度图。 2.预处理:中值滤波。 3.二值化:用一个初始阈值T对图像A进行二值化得到二值化图像B。 初始阈值T的确定方法是:选择阈值T=Gmax-(Gmax-Gmin)/3,Gmax和Gmin分别是最高、最低灰度值。 该阈值对不同牌照有一定的适应性,能够保证背景基本被置为0,以突出牌照区域。 4.削弱背景干扰。对图像B做简单的相邻像素灰度值相减,得到新的图像G,即Gi,j=|Pi,j-Pi,j-1|i=0,1,…,439 j=0,1,…,639Gi,0=Pi,0,左边缘直接赋值,不会影响整体效果。 5.用自定义模板进行中值滤波 区域灰度基本被赋值为0。考虑到文字是由许多短竖线组成,而背景噪声有一大部分是孤立噪声,用模板(1,1,1,1,1)T对G进行中值滤波,能够得到除掉了大部分干扰的图像C。 6.牌照搜索:利用水平投影法检测车牌水平位置,利用垂直投影法检测车牌垂直位置。 7.区域裁剪,截取车牌图像。
上传时间: 2014-01-08
上传用户:songrui
变量和相等问题的设计和实现将a、b、c、d、e、f这6个变量排成如图所示的 三角形,这6个变量分别取 1——6的整数,且均不相同。求使三角形三条边上的变量之和相等的全部解,如 3 6 2 1 4 5 为一个解。 程序引入变量a,b,c,d,e,f,并让它们分别取1——6的整数,在它们互不相等的 条件下, 测试由它们排成如图所示的三角形三条边上的变量之和是否相等,如相等即为一种满足要求的排列,把它们输出。当这些变量取尽所有的组合后,程序就可得到全部可能的解。
上传时间: 2015-11-04
上传用户:GavinNeko
文法如下: (1)S->aAcBe (2)A->b (3)A->Ab (4)B->d 關於lr0的語法分析
上传时间: 2015-11-22
上传用户:thinode
一、 一元三次回归方程 CubicMultinomialRegress.cs 方程模型为Y=a*X(3)+b*X(2)+c*X(1)+d public override double[] buildFormula() 得到系数数组,存放顺序与模型系数相反,即该数组中系数的值依次是d,c,b,a。 以后所述所有模型的系数存放均与此相同(多元线性回归方程除外)。 public override double forecast(double x) 预测函数,根据模型得到预测结果 public override double computeR2() 计算相关系数(决定系数),系数越接近1,数据越满足该模型。
标签: CubicMultinomialRegress override public double
上传时间: 2015-11-25
上传用户:13215175592