#include<reg51.h> #define uchar unsigned char #define uint unsigned int uint i,j; sbit dula=P2^6; sbit wela=P2^7; uchar code table[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d, 0x7d,0x07,0x7f,0x6f,0x77,0x7c, 0x39,0x5e,0x79,0x71}; void main() { j=0; i=0; TMOD=0X01; TH0=(65536-50000)/256; TL0=(65536-50000)%6; EA=1; ET0=1; TR0=1; while(1); } void time0() interrupt 1 { TH0=(65536-50000)/256; TL0=(65536-50000)%6; i++; if(i==15) { P0=table[j]; dula=1; dula=0; P0=0XC0; wela=1; wela=0; j++; i=0; if(j==16) { j=0; } } }
标签: 用定时器以间隔500MS在6位数码管上依次显示0、1、 2、3….C、D、E、F,重复。
上传时间: 2016-02-11
上传用户:娇纵Pamper
实验源代码 //Warshall.cpp #include<stdio.h> void warshall(int k,int n) { int i , j, t; int temp[20][20]; for(int a=0;a<k;a++) { printf("请输入矩阵第%d 行元素:",a); for(int b=0;b<n;b++) { scanf ("%d",&temp[a][b]); } } for(i=0;i<k;i++){ for( j=0;j<k;j++){ if(temp[ j][i]==1) { for(t=0;t<n;t++) { temp[ j][t]=temp[i][t]||temp[ j][t]; } } } } printf("可传递闭包关系矩阵是:\n"); for(i=0;i<k;i++) { for( j=0;j<n;j++) { printf("%d", temp[i][ j]); } printf("\n"); } } void main() { printf("利用 Warshall 算法求二元关系的可传递闭包\n"); void warshall(int,int); int k , n; printf("请输入矩阵的行数 i: "); scanf("%d",&k); 四川大学实验报告 printf("请输入矩阵的列数 j: "); scanf("%d",&n); warshall(k,n); }
上传时间: 2016-06-27
上传用户:梁雪文以
#include "iostream" using namespace std; class Matrix { private: double** A; //矩阵A double *b; //向量b public: int size; Matrix(int ); ~Matrix(); friend double* Dooli(Matrix& ); void Input(); void Disp(); }; Matrix::Matrix(int x) { size=x; //为向量b分配空间并初始化为0 b=new double [x]; for(int j=0;j<x;j++) b[j]=0; //为向量A分配空间并初始化为0 A=new double* [x]; for(int i=0;i<x;i++) A[i]=new double [x]; for(int m=0;m<x;m++) for(int n=0;n<x;n++) A[m][n]=0; } Matrix::~Matrix() { cout<<"正在析构中~~~~"<<endl; delete b; for(int i=0;i<size;i++) delete A[i]; delete A; } void Matrix::Disp() { for(int i=0;i<size;i++) { for(int j=0;j<size;j++) cout<<A[i][j]<<" "; cout<<endl; } } void Matrix::Input() { cout<<"请输入A:"<<endl; for(int i=0;i<size;i++) for(int j=0;j<size;j++){ cout<<"第"<<i+1<<"行"<<"第"<<j+1<<"列:"<<endl; cin>>A[i][j]; } cout<<"请输入b:"<<endl; for(int j=0;j<size;j++){ cout<<"第"<<j+1<<"个:"<<endl; cin>>b[j]; } } double* Dooli(Matrix& A) { double *Xn=new double [A.size]; Matrix L(A.size),U(A.size); //分别求得U,L的第一行与第一列 for(int i=0;i<A.size;i++) U.A[0][i]=A.A[0][i]; for(int j=1;j<A.size;j++) L.A[j][0]=A.A[j][0]/U.A[0][0]; //分别求得U,L的第r行,第r列 double temp1=0,temp2=0; for(int r=1;r<A.size;r++){ //U for(int i=r;i<A.size;i++){ for(int k=0;k<r-1;k++) temp1=temp1+L.A[r][k]*U.A[k][i]; U.A[r][i]=A.A[r][i]-temp1; } //L for(int i=r+1;i<A.size;i++){ for(int k=0;k<r-1;k++) temp2=temp2+L.A[i][k]*U.A[k][r]; L.A[i][r]=(A.A[i][r]-temp2)/U.A[r][r]; } } cout<<"计算U得:"<<endl; U.Disp(); cout<<"计算L的:"<<endl; L.Disp(); double *Y=new double [A.size]; Y[0]=A.b[0]; for(int i=1;i<A.size;i++ ){ double temp3=0; for(int k=0;k<i-1;k++) temp3=temp3+L.A[i][k]*Y[k]; Y[i]=A.b[i]-temp3; } Xn[A.size-1]=Y[A.size-1]/U.A[A.size-1][A.size-1]; for(int i=A.size-1;i>=0;i--){ double temp4=0; for(int k=i+1;k<A.size;k++) temp4=temp4+U.A[i][k]*Xn[k]; Xn[i]=(Y[i]-temp4)/U.A[i][i]; } return Xn; } int main() { Matrix B(4); B.Input(); double *X; X=Dooli(B); cout<<"~~~~解得:"<<endl; for(int i=0;i<B.size;i++) cout<<"X["<<i<<"]:"<<X[i]<<" "; cout<<endl<<"呵呵呵呵呵"; return 0; }
标签: 道理特分解法
上传时间: 2018-05-20
上传用户:Aa123456789
深圳市永嘉微电科技有限公司,原厂直销!原装现货更有优势!工程服务,技术支持,让您的生产高枕无忧!量大价优,保证原装。您有量,我有价! 联系人:许先生 联系手机:188 9858 2398 (微信) 联系QQ:191 888 5898 E-mail:zes1688@163.com 产品品牌:VINKA永嘉微电 产品型号:VKD233D8 芯片类型:触摸IC 针脚数:6 封装形式:SOT23-6 产品年份:全新年份 概述 VKD233D8是单按键触摸检测芯片,此触摸检测芯片内建稳压电路,提供稳定的电压给触摸感应电路使用,稳定的触摸检测效果可以广泛的满足不同应用的需求,此触摸检测芯片是专为取代传统按键而设计,触摸检测PAD的大小可依不同的灵敏度设计在合理的范围内,低功耗与宽工作电压,是此触摸芯片在DC或AC应用上的特性。 功能特点 ● 工作电压2.4V~5.5V ● 内建稳压电路提供稳定的电压给触摸检电路使用 ● 内建低压重置(LVR)功能 ● 工作电流@VDD=3V,待机典型值 4uA,最大工作电流8uA ● 最长响应时间 45mS,@VDD=3V ● 可以由外部电容(1~50pF)调整灵敏度 ● 稳定的人体触摸检测可取代传统的按键开关 ● 提供低功耗模式 ● 提供输出模式选择(TOGpin)可选择直接输出或锁存(toggle)输出 ● 提供最长输出时间约16秒(±35%@VDD=3.0V) ● Qpin为CMOS输出,可由(AHLBpin)选择高电平输出有效或低电平输出有效 ● 上电后约有0.5秒的稳定时间,此期间内不要触摸检测点,此时所有功能都被禁止 ● 自动校准功能 刚上电的8秒内约每1秒刷新一次参考值,若在上电后的8秒内有触摸按键或8秒后仍未触摸按键,则重新校准周期切换为4秒 应用范围 ● 各种消费性产品 ● 取代按钮按键 永嘉原厂常用触摸/触控按键IC系列 芯片简介如下: 标准/低功耗智能TWS触控IC VKD223EB --- 感应通道数:1个 工作电压/电流2.0V-5.5V/5uA-3V 通讯接口:直接输出,锁存(toggle)输出 封装:SOT23-6 VKD223DB --- 感应通道数:1个 工作电压/电流2.4V-5.5V/2.5uA-3V 通讯接口:直接输出,锁存(toggle)输出 封装:SOT23-6 VKD223DH --- 感应通道数:1 工作电压/电流:2.4V-5.5V/2.5uA-3V 通讯接口:直接输出,锁存(toggle)输出 封装:SOT23-6 VKD223DS --- 感应通道数:1 工作电压/电流:2.4V-5.5V/2.5uA-3V 通讯接口:直接输出,锁存(toggle)输出 封装:DFN-6 VKD223DR --- 感应通道数:1 工作电压/电流:2.4V-5.5V/1.5uA-3V 通讯接口:直接输出,锁存(toggle)输出 封装:DFN-6 VKD223DQ --- 感应通道数:1 工作电压/电流:2.4V-5.5V/5uA-3V 通讯接口:直接输出,锁存(toggle)输出 封装:SOT23-6 VKD223DM --- 感应通道数:1 工作电压/电流:2.4V-5.5V/5uA-3V 通讯接口:直接输出,锁存(toggle)输出 封装:SOT23-6 VKD232C --- 感应通道数:2 工作电压/电流:2.4V-5.5V/2.5uA-3V 通讯接口:直接输出,低电平有效 封装:SOT23-6 VKD104BR --- 感应通道数:2 工作电压/电流:2.4V-5.5V/13uA-3V 通讯接口:直接输出,toggle输出 封装:SOP8 VKD104SR --- 感应通道数:3 工作电压/电流:2.4V-5.5V/13uA-3V 通讯接口:直接输出,toggle输出 封装:SSOP10 VKD104BR-3 --- 感应通道数:3 工作电压/电流:2.4V-5.5V/13uA-3V 通讯接口:直接输出 封装:SOP8 VKD104 --- 感应通道数:4 工作电压/电流:2.4V-5.5V/13uA-3V 通讯接口:直接输出,锁存输出,开漏输出 封装:DICE VKD104BC --- 感应通道数:4 工作电压/电流:2.4V-5.5V/13uA-3V 通讯接口:直接输出,锁存输出,开漏输出 封装:SOP16 VKD104BS --- 感应通道数:4 工作电压/电流:2.4V-5.5V/13uA-3V 通讯接口:直接输出,锁存输出,开漏输出 封装:SOP16 1-8点高灵敏度电容式水位检测专用触控IC VK36W1D --- 水位检测通道:1 电压/电流:2.2V-5.5V/10UA-3V3(SLEEP) 1对1直接输出 封装:SOT23-6 VK36W2D --- 水位检测通道:1 电压/电流:2.2V-5.5V/10UA-3V3(SLEEP) 1对1直接输出 封装:SOP8 VK36W4D --- 水位检测通道:1 电压/电流:2.2V-5.5V/10UA-3V3(SLEEP) 1对1直接输出 封装:SOP16/DFN16 VK36W6D --- 水位检测通道:1 电压/电流:2.2V-5.5V/10UA-3V3(SLEEP) 1对1直接输出 封装:SOP16/DFN16 VK36W8D --- 水位检测通道:1 电压/电流:2.2V-5.5V/10UA-3V3(SLEEP) I2C直接输出 封装:SOP16/DFN16 1-2键高性价比触控IC VK3601L --- 触摸通道:1 电压/电流:2.4V-5.5V/4UA-3V3(SLEEP) 1对1直接输出 封装:SOT23-6 VK3602XS --- 触摸通道:2 电压/电流:2.4V-5.5V/60uA-3V 2对2锁存输出 封装:SOP8 VK3602XS --- 触摸通道:2 电压/电流:2.4V-5.5V/60uA-3V 2对2直接输出 封装:SOP8 高性价比一进一出触摸IC VK36N1D --- 触摸通道:1 电压/电流:2.2V-5.5V/7UA-3V3(SLEEP) 1对1直接输出 封装:SOT23-6 VK36N2D --- 触摸通道:2 电压/电流:2.2V-5.5V/7UA-3V3(SLEEP) 1对1直接输出 封装:SOP8 VK36N3D --- 触摸通道:3 电压/电流:2.2V-5.5V/7UA-3V3(SLEEP) 1对1直接输出 封装:SOP16/QFN16 VK36N4D --- 触摸通道:4 电压/电流:2.2V-5.5V/7UA-3V3(SLEEP) 1对1直接输出 封装:SOP16/QFN16 VK36N5D --- 触摸通道:5 电压/电流:2.2V-5.5V/7UA-3V3(SLEEP) 1对1直接输出 封装:SOP16/QFN16 VK36N6D --- 触摸通道:6 电压/电流:2.2V-5.5V/7UA-3V3(SLEEP) 1对1直接输出 封装:SOP16/QFN16 永嘉原厂LED/LCD液晶控制器及驱动器系列 芯片简介如下: 内存映射的LED控制器及驱动器 VK1628 --- 通讯接口:STb/CLK/DIO 电源电压:5V(4.5~5.5V) 驱动点阵:70/52 共阴驱动:10段7位/13段4位 共阳驱动:7段10位 按键:10x2 封装SOP28 VK1629 --- 通讯接口:STb/CLK/DIN/DOUT 电源电压:5V(4.5~5.5V) 驱动点阵:128 共阴驱动:16段8位 共阳驱动:8段16位 按键:8x4 封装QFP44 VK1629A --- 通讯接口:STb/CLK/DIO 电源电压:5V(4.5~5.5V) 驱动点阵:128 共阴驱动:16段8位 共阳驱动:8段16位 按键:--- 封装SOP32 VK1629B --- 通讯接口:STb/CLK/DIO 电源电压:5V(4.5~5.5V) 驱动点阵:112 共阴驱动:14段8位 共阳驱动:8段14位 按键:8x2 封装SOP32 VK1629C --- 通讯接口:STb/CLK/DIO 电源电压:5V(4.5~5.5V) 驱动点阵:120 共阴驱动:15段8位 共阳驱动:8段15位 按键:8x1 封装SOP32 VK1629D --- 通讯接口:STb/CLK/DIO 电源电压:5V(4.5~5.5V) 驱动点阵:96 共阴驱动:12段8位 共阳驱动:8段12位 按键:8x4 封装SOP32 VK1640 --- 通讯接口: CLK/DIN 电源电压:5V(4.5~5.5V) 驱动点阵:128 共阴驱动:8段16位 共阳驱动:16段8位 按键:--- 封装SOP28 VK1650 --- 通讯接口: SCL/SDA 电源电压:5V(3.0~5.5V) 驱动点阵:8x16 共阴驱动:8段4位 共阳驱动:4段8位 按键:7x4 封装SOP16/DIP16 VK1668 ---通讯接口:STb/CLK/DIO 电源电压:5V(4.5~5.5V) 驱动点阵:70/52 共阴驱动:10段7位/13段4位 共阳驱动:7段10位 按键:10x2 封装SOP24 VK6932 --- 通讯接口:STb/CLK/DIN 电源电压:5V(4.5~5.5V) 驱动点阵:128 共阴驱动:8段16位17.5/140mA 共阳驱动:16段8位 按键:--- 封装SOP32 RAM映射LCD控制器和驱动器系列 VK1024b 2.4V~5.2V 6seg*4com 6*3 6*2 偏置电压1/2 1/3 S0P-16 VK1056b 2.4V~5.2V 14seg*4com 14*3 14*2 偏置电压1/2 1/3 SOP-24/SSOP-24 VK1072B 2.4V~5.2V 18seg*4com 18*3 18*2 偏置电压1/2 1/3 SOP-28 VK1072C 2.4V~5.2V 18seg*4com 18*3 18*2 偏置电压1/2 1/3 SOP-28 VK1088b 2.4V~5.2V 22seg*4com 22*3 偏置电压1/2 1/3 QFN-32L(4MM*4MM) VK0192 2.4V~5.2V 24seg*8com 偏置电压1/4 LQFP-44 VK0256 2.4V~5.2V 32seg*8com 偏置电压1/4 QFP-64 VK0256b 2.4V~5.2V 32seg*8com 偏置电压1/4 LQFP-64 VK0256C 2.4V~5.2V 32seg*8com 偏置电压1/4 LQFP-52 VK1621S-1 2.4V~5.2V 32*4 32*3 32*2 偏置电压1/2 1/3 LQFP44/48/SSOP48/SKY28/DICE裸片 VK1622B 2.7V~5.5V 32seg*8com 偏置电压1/4 LQFP-48 VK1622S 2.7V~5.5V 32seg*8com 偏置电压1/4 LQFP44/48/52/64/QFP64/DICE裸片 VK1623S 2.4V~5.2V 48seg*8com 偏置电压1/4 LQFP-100/QFP-100/DICE裸片 VK1625 2.4V~5.2V 64seg*8com 偏置电压1/4 LQFP-100/QFP-100/DICE VK1626 2.4V~5.2V 48seg*16com 偏置电压1/5 LQFP-100/QFP-100/DICE (高品质 高性价比:液晶显示驱动IC 原厂直销 工程技术支持!) 高抗干扰LCD液晶控制器及驱动系列 VK2C21A 2.4~5.5V 20seg*4com 16*8 偏置电压1/3 1/4 I2C通讯接口 SOP-28 VK2C21B 2.4~5.5V 16seg*4com 12*8 偏置电压1/3 1/4 I2C通讯接口 SOP-24 VK2C21C 2.4~5.5V 12seg*4com 8*8 偏置电压1/3 1/4 I2C通讯接口 SOP-20 VK2C21D 2.4~5.5V 8seg*4com 4*8 偏置电压1/3 1/4 I2C通讯接口 NSOP-16 VK2C22A 2.4~5.5V 44seg*4com 偏置电压1/2 1/3 I2C通讯接口 LQFP-52 VK2C22B 2.4~5.5V 40seg*4com 偏置电压1/2 1/3 I2C通讯接口 LQFP-48 VK2C23A 2.4~5.5V 56seg*4com 52*8 偏置电压1/3 1/4 I2C通讯接口 LQFP-64 VK2C23B 2.4~5.5V 36seg*8com 偏置电压1/3 1/4 I2C通讯接口 LQFP-48 VK2C24 2.4~5.5V 72seg*4com 68*8 60*16 偏置电压1/3 1/4 1/5 I2C通讯接口 LQFP-80 超低功耗LCD液晶控制器及驱动系列 VKL060 2.5~5.5V 15seg*4com 偏置电压1/2 1/3 I2C通讯接口 SSOP-24 VKL128 2.5~5.5V 32seg*4com 偏置电压1/2 1/3 I2C通讯接口 LQFP-44 VKL144A 2.5~5.5V 36seg*4com 偏置电压1/2 1/3 I2C通讯接口 TSSOP-48 VKL144B 2.5~5.5V 36seg*4com 偏置电压1/2 1/3 I2C通讯接口 QFN48L (6MM*6MM) 静态显示LCD液晶控制器及驱动系列 VKS118 2.4~5.2V 118seg*2com 偏置电压 -- 4线通讯接口 LQFP-128 VKS232 2.4~5.2V 116seg*2com 偏置电压1/11/2 4线通讯接口 LQFP-128 联系人:许先生 联系手机:188 9858 2398 (微信) 联系QQ:191 888 5898 E-mail:zes1688@163.com 以上介绍内容为IC参数简介,难免有错漏,且相关IC型号众多,未能一一收录。欢迎联系索取完整资料及样品!生意无论大小,做人首重诚信!本公司全体员工将既往开来,再接再厉。更高性价比的好产品.竭诚希望能与各位客户朋友深入沟通,携手共进,共同成长,合作共赢!谢谢。
标签: VKD233D8 触摸感应IC 单按键触摸IC 触控芯片
上传时间: 2021-03-15
上传用户:szqxw1688
ADS8329 Verilog fpga 驱动源码,2.7V 至 5.5V 16 位 1MSPS 串行模数转换器 ADC芯片ADS8329数据采集的verilog代码,已经用在工程中,可以做为你的设计参考。( input clock, input timer_clk_r, input reset, output reg sample_over, output reg ad_convn, input ad_eocn, output reg ad_csn, output reg ad_clk, input ad_dout, output reg ad_din, output reg [15:0] ad_data_lock);reg [15:0] ad_data_old;reg [15:0] ad_data_new; reg [19:0] ad_data_temp; reg [15:0] ad_data;reg [4:0] ad_data_cnt;reg [4:0] ad_spi_cnt; reg [5:0] time_dly_cnt; parameter [3:0] state_mac_IDLE = 0, state_mac_0 = 1, state_mac_1 = 2, state_mac_2 = 3, state_mac_3 = 4, state_mac_4 = 5, state_mac_5 = 6, state_mac_6 = 7, state_mac_7 = 8, state_mac_8 = 9, state_mac_9 = 10, state_mac_10 = 11, state_mac_11 = 12, state_mac_12 = 13, state_mac_13 = 14, state_mac_14 = 15; reg [3:0] state_curr;reg [3:0] state_next;
上传时间: 2022-01-30
上传用户:1208020161
无线充电Qi协议,版本:1.2.4,全册:part 1、2、3&4;全册齐全。
上传时间: 2022-04-01
上传用户:ttalli
DP转HDMI/VGA转换器AG6320最新规格书,2020年1月 ALGOLTEK AG6320是一款实现显示端DP口转HDMI/VGA数据转换器。AG6320是一款单芯片解决方案,通过DP端口连接器传输视频和音频流,其DP1.2支持可配置的1、2和4通道,分别为1.62Gbps、2.7Gbps和5.4Gbps输入,HDMI支持高达4K2K@30Hz的输出。另外,RGB triple-DAC支持高达1200P@60Hz的输出。AG6320系列还支持用于固件升级的外置SPI闪存,以升级更好的兼容性和灵活性。它适用于笔记本电脑、平板电脑和智能手机配件市场的扩展坞、扩展显示适配器和转换器的应用。
上传时间: 2022-06-17
上传用户:
电子元器件抗ESD技术讲义:引 言 4 第1 章 电子元器件抗ESD损伤的基础知识 5 1.1 静电和静电放电的定义和特点 5 1.2 对静电认识的发展历史 6 1.3 静电的产生 6 1.3.1 摩擦产生静电 7 1.3.2 感应产生静电 8 1.3.3 静电荷 8 1.3.4 静电势 8 1.3.5 影响静电产生和大小的因素 9 1.4 静电的来源 10 1.4.1 人体静电 10 1.4.2 仪器和设备的静电 11 1.4.3 器件本身的静电 11 1.4.4 其它静电来源 12 1.5 静电放电的三种模式 12 1.5.1 带电人体的放电模式(HBM) 12 1.5.2 带电机器的放电模式(MM) 13 1.5.3 充电器件的放电模型 13 1.6 静电放电失效 15 1.6.1 失效模式 15 1.6.2 失效机理 15 第2章 制造过程的防静电损伤技术 2.1 静电防护的作用和意义 2.1.1 多数电子元器件是静电敏感器件 2.1.2 静电对电子行业造成的损失很大 2.1.3 国内外企业的状况 2.2 静电对电子产品的损害 2.2.1 静电损害的形式 2.2.2 静电损害的特点 2.2.3 可能产生静电损害的制造过程 2.3 静电防护的目的和总的原则 2.3.1 目的和原则 2.3.2 基本思路和技术途径 2.4 静电防护材料 2.4.1 与静电防护材料有关的基本概念 2.4.2 静电防护材料的主要参数 2.5 静电防护器材 2.5.1 防静电材料的制品 2.5.2 静电消除器(消电器、电中和器或离子平衡器) 2.6 静电防护的具体措施 2.6.1 建立静电安全工作区 2.6.2 包装、运送和存储工程的防静电措施 2.6.3 静电检测 2.6.4 静电防护的管理工作 第3章 抗静电检测及分析技术 3.1 抗静电检测的作用和意义 3.2 静电放电的标准波形 3.3 抗ESD检测标准 3.3.1 电子元器件静电放电灵敏度(ESDS)检测及分类的常用标准 3.3.2 标准试验方法的主要内容(以MIL-STD-883E 方法3015.7为例) 3.4 实际ESD检测的结果统计及分析 3.4.1 试验条件 3.4.2 ESD评价试验结果分析 3.5 关于ESD检测中经常遇到的一些问题 3.6 ESD损伤的失效定位分析技术 3.6.1 端口I-V特性检测 3.6.2 光学显微观察 3.6.3 扫描电镜分析 3.6.4 液晶分析 3.6.5 光辐射显微分析技术 3.6.6 分层剥离技术 3.6.7 小结 3.7 ESD和EOS的判别方法讨论 3.7.1 概念 3.7.2 ESD和EOS对器件损伤的分析判别方法 第4 章 电子元器件抗ESD设计技术 4.1 元器件抗ESD设计基础 4.1.1抗ESD过电流热失效设计基础 4.1.2抗场感应ESD失效设计基础 4.2元器件基本抗ESD保护电路 4.2.1基本抗静电保护电路 4.2.2对抗静电保护电路的基本要求 4.2.3 混合电路抗静电保护电路的考虑 4.2.4防静电保护元器件 4.3 CMOS电路ESD失效模式和机理 4.4 CMOS电路ESD可靠性设计策略 4.4.1 设计保护电路转移ESD大电流。 4.4.2 使输入/输出晶体管自身的ESD阈值达到最大。 4.5 CMOS电路基本ESD保护电路的设计 4.5.1 基本ESD保护电路单元 4.5.2 CMOS电路基本ESD保护电路 4.5.3 ESD设计的辅助工具-TLP测试 4.5.4 CMOS电路ESD保护设计方法 4.5.5 CMOS电路ESD保护电路示例 4.6 工艺控制和管理
上传时间: 2013-07-13
上传用户:2404
到目前为止,互感器作为输变电设备的重要组成部分,其设计和开发还始终停留在手工试算阶段,这种手工试算的方法已经越来越不能满足工业发展的需要.各互感器生产厂家迫切需要对产品进行计算机辅助设计.故而保定天威集团大型变压器公司与河北工业大学电器研究所协作,进行了"互感器集成CAD系统"这一软件的研究与开发,该论文主要负责"电流互感器优化设计计算软件的研究与开发"这一部分.产品设计和产品优化设计的软件开发包括两部分:一部分为设计计算程序,其中包括电磁、动热稳定、重量等计算;另一部分为优化设计程序,主要是针对产品的成本和产品工艺进行了合理的优化,建立优化设计的数学模型和完成优化程序.该论文在了解电流互感器原理和结构的基础上,结合工程实际确立了额定电压为110kV,电流等级为2×50/5(1)A~2×1000/5(1)A的电流互感器的设计计算方法并根据具体情况选择了合适的优化设计方法.此外,该论文还对额定电压为220kV,电流等级从2×300/5(1)A~2×2000/5(1)A的电流互感器优化设计计算软件做了简单介绍.
上传时间: 2013-06-08
上传用户:杜莹12345
随着电力电子技术、微处理器技术以及控制技术的发展,基于转子磁链定向的交流电机矢量控制系统以其优良的性能受到了广泛应用。采用SVPWM逆变器的异步电动机矢量控制系统在转速参考值变化或者负载转矩参考值变化的动态情况下,参考电压矢量可能会超出基本空间矢量构成的正六边形,此时便出现动态过调制,需要用过调制策略将超出的电压矢量重新限定在正六边形边界内。不同的过调制策略会给整个系统带来不同的动态性能,本文在对过调制策略进行完善的基础上,针对三种过调制策略对交流电动机动态性能的影响进行了研究,并对其机理进行了理论分析与探讨。 @@ 本文首先以三相异步电动机在两相静止坐标系下的动态方程为基础,按照转子磁链定向,设计了转子磁链观测器,完成了励磁电流分量和转矩电流分量的解耦,并构建了基于SVPWM的异步电动机矢量控制系统的MATLAB仿真模型。在矢量控制中,电流控制对系统性能具有重要影响。为了改善系统性能,所设计的矢量控制系统采用了同步电流控制,并对反电势进行了前馈补偿。 @@ 在分析了现有的三种过调制策略之后,对过调制策略进行了完善,并构建了异步电动机矢量控制系统的过调制仿真模型。过调制中,当原参考电压矢量位于正六边形中任意两个扇区交界附近时,过调制策略2和3所得到的新电压矢量仍会超出正六边形边界,过调制算法不再适用于此区域。针对以上不足,本文对过调制策略2和3进行了完善,使过调制算法适用于所有区域。采用完善后的过调制策略对转速参考值变化和负载转矩参考值变化的异步电动机矢量控制系统进行仿真,发现在加速与加载的条件下,过调制策略2的动态性能好于过调制策略1,而过调制策略3的动态性能最佳,具有最小的动态响应时间,暂态性能优良;在减载的条件下,过调制策略1和2能够很快的进入稳定状态,但是过调制策略3却出现问题,动态响应时间很长,说明此策略具有一定的局限性。 @@ 本文深入探讨了三种过调制策略导致不同动态性能的内在机理,通过对三种过调制策略中电压矢量的幅值和相位进行分析,理论上解释了出现不同动态响应时间的原因。出现过调制时,过调制策略2中新电压矢量的幅值总是大于过调制策略1中新电压矢量的幅值,所以动态性能更好。在加速和加 载条件下,过调制策略3中新电压矢量的相位总是超前于过调制策略1和2中新电压矢量的相位,因此可以获得更快的动态响应,暂态性能更佳。但是在减载条件下,过调制策略3中新电压矢量与原电压矢量间的相位关系处于无规律的超前滞后状态,导致过调制策略3出现问题,动态响应时间很长,说明此过调制策略有其不足之处,有待于改进。@@关键词:SVPWM;矢量控制;过调制;动态性能
上传时间: 2013-06-27
上传用户:nunnzhy