一种嵌入可读水印的自适应盲水印算法, 本文提出了一种基于DWT的嵌入可读水印的自适应盲水印算法,通过分析图像经离散小波变换后细 节子带系数的特性,把细节子带系数的均值和方差作为水印信息的一部分来自适应地修改图像小波分解后某些细节 子带的系数值,在满足水印不可感知性的条件下自适应地嵌入水印信息,实现了水印不可感知性和鲁棒性之间的折 衷. 同时,水印的提取无须求助于原图像,很好的实现了水印的盲检测. 这里的水印是一幅有实际意义的二值图像. 实 验结果和攻击测试表明,本文提出的算法对JPEG/ JPEG2000 压缩、添加噪声、剪切、像素移位等多种攻击有较强的鲁棒 性,同时对直方图均衡化、对比度调整和高斯滤波等图像处理操作也具有一定的抵抗能力.
上传时间: 2017-08-30
上传用户:阳光少年2016
遗传算法是一种模拟自然界生物进化的搜索算法,由于它简单易行,鲁 棒性强,尤其是其不需要专门的领域知识而仅用适应度函数作评价来指导搜 索过程,从而使它的应用范围极为广泛,并且己在众多领域得到了实际应用, 取得了许多令人瞩目的成果,引起广大学者和工程人员的关注。
上传时间: 2014-02-10
上传用户:lizhizheng88
研究复杂网络理论必备的文章,是一篇外文文献,研究了复杂网络的一些统计参数和鲁棒性
标签: 复杂网络
上传时间: 2013-12-27
上传用户:远远ssad
随着我国经济的迅速发展和信息技术的进步,物流行业已经被确定为我国国民经济的重要产业和经济发展的新增长点,其中物流配送路径的优化是物流系统中的关键一环,选择合理经济的配送路线可以极大的降低配送成本,提高配送效率,增加企业的经济效益。 本文以如何科学的解决配送路径的优化问题为出发点,分析比较了各种算法在解决VRP中的特点与利弊,由于蚁群算法有着良好的正反馈机制与较强的鲁棒性和灵活性,本文选择了蚁群算法作为解决VRP问题的算法,并结合VRP问题本身的特点,针对蚁群算法存在的过早收敛等不足进行改进,最后将改进的蚁群算法应用在本文所建立的VRP模型中,并通过仿真试验,证明了蚁群算法在解决大规模动态VRP问题中的有效性和可行性。 论文主要研究工作和创新性成果有以下几个方面: (1)设定了一类配送点位置不变,需求时间不定的动态带软时间窗的VRP问题。利用时间段的概念,将动态VRP问题转化为连续时间段内的静态VRP问题进行研究,构造了该问题的模型,提出了动态VRP问题的求解方案。 (2)结合VRP问题的特点,针对蚁群算法的早熟等不足,对蚁群算法进行改进,通过对伪随机概率公式的改进,配送点的二次...
上传时间: 2017-09-11
上传用户:熊少锋
随着我国经济的迅速发展和信息技术的进步,物流行业已经被确定为我国国民经济的重要产业和经济发展的新增长点,其中物流配送路径的优化是物流系统中的关键一环,选择合理经济的配送路线可以极大的降低配送成本,提高配送效率,增加企业的经济效益。 本文以如何科学的解决配送路径的优化问题为出发点,分析比较了各种算法在解决VRP中的特点与利弊,由于蚁群算法有着良好的正反馈机制与较强的鲁棒性和灵活性,本文选择了蚁群算法作为解决VRP问题的算法,并结合VRP问题本身的特点,针对蚁群算法存在的过早收敛等不足进行改进,最后将改进的蚁群算法应用在本文所建立的VRP模型中,并通过仿真试验,证明了蚁群算法在解决大规模动态VRP问题中的有效性和可行性。 论文主要研究工作和创新性成果有以下几个方面: (1)设定了一类配送点位置不变,需求时间不定的动态带软时间窗的VRP问题。利用时间段的概念,将动态VRP问题转化为连续时间段内的静态VRP问题进行研究,构造了该问题的模型,提出了动态VRP问题的求解方案。 (2)结合VRP问题的特点,针对蚁群算法的早熟等不足,对蚁群算法进行改进,通过对伪随机概率公式的改进,配送点的二次...
上传时间: 2013-12-18
上传用户:yuanyuan123
BP 算法的神经网络,采用VC编制,具有较好的鲁棒性和快速收敛特性。
上传时间: 2013-12-13
上传用户:yuchunhai1990
早期二自由度的具体分析,理论与图形结合,便于理解
标签: 二自由度
上传时间: 2016-03-09
上传用户:KKW8
实验源代码 //Warshall.cpp #include<stdio.h> void warshall(int k,int n) { int i , j, t; int temp[20][20]; for(int a=0;a<k;a++) { printf("请输入矩阵第%d 行元素:",a); for(int b=0;b<n;b++) { scanf ("%d",&temp[a][b]); } } for(i=0;i<k;i++){ for( j=0;j<k;j++){ if(temp[ j][i]==1) { for(t=0;t<n;t++) { temp[ j][t]=temp[i][t]||temp[ j][t]; } } } } printf("可传递闭包关系矩阵是:\n"); for(i=0;i<k;i++) { for( j=0;j<n;j++) { printf("%d", temp[i][ j]); } printf("\n"); } } void main() { printf("利用 Warshall 算法求二元关系的可传递闭包\n"); void warshall(int,int); int k , n; printf("请输入矩阵的行数 i: "); scanf("%d",&k); 四川大学实验报告 printf("请输入矩阵的列数 j: "); scanf("%d",&n); warshall(k,n); }
上传时间: 2016-06-27
上传用户:梁雪文以
遗传算法已经成为组合优化问题的近似最优解的一把钥匙。它是一种模拟生物进化过程的计算模型,作为一种新的全局优化搜索算法,它以其简单、鲁棒性强、适应并行处理以及应用范围广等特点,奠定了作为21世纪关键智能计算的地位。 背包问题是一个典型的组合优化问题,在计算理论中属于NP-完全问题, 其计算复杂度为,传统上采用动态规划来求解。设w是经营活动 i 所需要的资源消耗,M是所能提供的资源总量,p是人们经营活动i得到的利润或收益,则背包问题就是在资源有限的条件下, 追求总的最大收益的资源有效分配问题。
上传时间: 2018-04-26
上传用户:jiazhe110125
#include "iostream" using namespace std; class Matrix { private: double** A; //矩阵A double *b; //向量b public: int size; Matrix(int ); ~Matrix(); friend double* Dooli(Matrix& ); void Input(); void Disp(); }; Matrix::Matrix(int x) { size=x; //为向量b分配空间并初始化为0 b=new double [x]; for(int j=0;j<x;j++) b[j]=0; //为向量A分配空间并初始化为0 A=new double* [x]; for(int i=0;i<x;i++) A[i]=new double [x]; for(int m=0;m<x;m++) for(int n=0;n<x;n++) A[m][n]=0; } Matrix::~Matrix() { cout<<"正在析构中~~~~"<<endl; delete b; for(int i=0;i<size;i++) delete A[i]; delete A; } void Matrix::Disp() { for(int i=0;i<size;i++) { for(int j=0;j<size;j++) cout<<A[i][j]<<" "; cout<<endl; } } void Matrix::Input() { cout<<"请输入A:"<<endl; for(int i=0;i<size;i++) for(int j=0;j<size;j++){ cout<<"第"<<i+1<<"行"<<"第"<<j+1<<"列:"<<endl; cin>>A[i][j]; } cout<<"请输入b:"<<endl; for(int j=0;j<size;j++){ cout<<"第"<<j+1<<"个:"<<endl; cin>>b[j]; } } double* Dooli(Matrix& A) { double *Xn=new double [A.size]; Matrix L(A.size),U(A.size); //分别求得U,L的第一行与第一列 for(int i=0;i<A.size;i++) U.A[0][i]=A.A[0][i]; for(int j=1;j<A.size;j++) L.A[j][0]=A.A[j][0]/U.A[0][0]; //分别求得U,L的第r行,第r列 double temp1=0,temp2=0; for(int r=1;r<A.size;r++){ //U for(int i=r;i<A.size;i++){ for(int k=0;k<r-1;k++) temp1=temp1+L.A[r][k]*U.A[k][i]; U.A[r][i]=A.A[r][i]-temp1; } //L for(int i=r+1;i<A.size;i++){ for(int k=0;k<r-1;k++) temp2=temp2+L.A[i][k]*U.A[k][r]; L.A[i][r]=(A.A[i][r]-temp2)/U.A[r][r]; } } cout<<"计算U得:"<<endl; U.Disp(); cout<<"计算L的:"<<endl; L.Disp(); double *Y=new double [A.size]; Y[0]=A.b[0]; for(int i=1;i<A.size;i++ ){ double temp3=0; for(int k=0;k<i-1;k++) temp3=temp3+L.A[i][k]*Y[k]; Y[i]=A.b[i]-temp3; } Xn[A.size-1]=Y[A.size-1]/U.A[A.size-1][A.size-1]; for(int i=A.size-1;i>=0;i--){ double temp4=0; for(int k=i+1;k<A.size;k++) temp4=temp4+U.A[i][k]*Xn[k]; Xn[i]=(Y[i]-temp4)/U.A[i][i]; } return Xn; } int main() { Matrix B(4); B.Input(); double *X; X=Dooli(B); cout<<"~~~~解得:"<<endl; for(int i=0;i<B.size;i++) cout<<"X["<<i<<"]:"<<X[i]<<" "; cout<<endl<<"呵呵呵呵呵"; return 0; }
标签: 道理特分解法
上传时间: 2018-05-20
上传用户:Aa123456789