通过结合51LPC微控制器和BTA2xx三端双向可控硅Philips半导体使阻性和容性负载的控制更容易这个通用的一对所有控制解决方案覆盖了低功耗高感性的负载如螺线管阀门和同步电机到以主电压供电的高功耗阻性负载如电机和电热器这个两芯片解决方案性能的核心是检测负载电流过零的专利技术使用该技术不需要在负载电路上连接旁路电阻这样不但简化了设计而且降低了整个系统的成本这个简单的微控制器三端双向可控硅的组合向设计者提供了一个有效可编程的解决方法而且电磁干扰最小最小门脉冲持续时间的自动应用可以实现任何负载下的锁定由于使用较低的电源电流因此只需要一个阻性或R-C 的主分支电源附加的增值特性可以更容易地实现遥控软启动错误管理和使用三端双向可控硅监控的负载电流管理将传感器连接到模拟或数字输入也为整个系统提供了智能的闭环控制
上传时间: 2013-11-17
上传用户:huang111
单片机原理和应用实验电子教材 第一章 MCS—51 实验系统安装与启动§ 1.1 MCS51实验系统安装与启动……………………… 2§ 1.2 DVCC系列实验系统实验调试有关说明…………… 2第二章硬件实验§ 2.1 实验项目实验一 8031 单片机P3、P1口应用……………………3实验二工业顺序控制………………………………… 4实验三8255 控制交通灯……………………………… 6实验四简单 I/O口扩展实验………………………… 7实验五A/D 转换实验………………………………… 8实验六D/A 转换………………………………………… 9实验七串并转换实验……………………………………11实验八定时/计数器8253A应用………………………12实验九8279 键盘显示实验……………………………13实验十微型打印机打印字符、曲线、汉字……………14实验十一 步进电机控制……………………………………15实验十二小直流电机调速实验……………………………16实验十三电子音响…………………………………………17实验十四继电器控制实验…………………………………18实验十五数据存贮器和程序存贮扩展实验………………19§ 2.2 软件清单实验一 8031 单片机P3、P1口应用……………………21实验二工业顺序控制……………………………………21实验三8255 控制交通灯…………………………………23实验四简单 I/O口扩展实验……………………………25实验五A/D 转换实验……………………………………25实验六D/A 转换…………………………………………26实验七串并转换实验……………………………………27实验八定时/计数器8253A应用…………………………28实验九8279 键盘显示实验………………………………29实验十微型打印机打印字符、曲线、汉字………………31实验十一步进电机控制………………………………………34实验十二小直流电机调速实验………………………………41实验十三电子音响……………………………………………42实验十四继电器控制实验……………………………………43实验十五数据存贮器和程序存贮扩展实验…………………44
上传时间: 2013-10-15
上传用户:a296386173
AVR单片机技术原理 AVR单片机介绍 单片机又称单片微控制器,它是把一个计算机系统集成到一个芯片上,概括的讲:一块芯片就成了一台计算机。单片机技术是计算机技术的一个分支,是简易机器人的核心元件。 1997年,由ATMEL公司挪威设计中心的A先生与V先生利用ATMEL公司的Flash新技术, 共同研发出RISC精简指令集的高速8位单片机,简称AVR。[编辑本段]AVR单片机的优势特征 单片机已广泛地应用于军事、工业、家用电器、智能玩具、便携式智能仪表和机器人制作等领域,使产品功能、精度和质量大幅度提升,且电路简单,故障率低,可靠性高,成本低廉。单片机种类很多,在简易机器人制作和创新中,为什么选用AVR单片机呢? 一、简便易学,费用低廉 首先,对于非专业人员来说,选择AVR单片机的最主要原因,是进入AVR单片机开发的门槛非常低,只要会操作电脑就可以学习AVR单片机的开发。单片机初学者只需一条ISP下载线,把编辑、调试通过的软件程序直接在线写入AVR单片机,即可以开发AVR单片机系列中的各种封装的器件。AVR单片机因此在业界号称“一线打天下”。 其次,AVR单片机便于升级。AVR程序写入是直接在电路板上进行程序修改、烧录等操作,这样便于产品升级。 再次,AVR单片机费用低廉。学习AVR单片机可使用ISP在线下载编程方式(即把PC机上编译好的程序写到单片机的程序存储器中),不需购买仿真器、编程器、擦抹器和芯片适配器等,即可进行所有AVR单片机的开发应用,这可节省很多开发费用。程序存储器擦写可达10000次以上,不会产生报废品。 二、高速、低耗、保密 首先,AVR单片机是高速嵌入式单片机: 1、AVR单片机具有预取指令功能,即在执行一条指令时,预先把下一条指令取进来,使得指令可以在一个时钟周期内执行。 2、多累加器型,数据处理速度快。AVR单片机具有32个通用工作寄存器,相当于有32条立交桥,可以快速通行。 3、中断响应速度快。AVR单片机有多个固定中断向量入口地址,可快速响应中断。 其次,AVR单片机耗能低。对于典型功耗情况,WDT关闭时为100nA,更适用于电池供电的应用设备。有的器件最低1.8 V即可工作。 再次,AVR单片机保密性能好。它具有不可破解的位加密锁Lock Bit技术,保密位单元深藏于芯片内部,无法用电子显微镜看到。 三、I/O口功能强,具有A/D转换等电路 1. AVR单片机的I/O口是真正的I/O口,能正确反映I/O口输入/输出的真实情况。工业级产品,具有大电流(灌电流)10~40 mA,可直接驱动可控硅SCR或继电器,节省了外围驱动器件。 2. AVR单片机内带模拟比较器,I/O口可用作A/D转换,可组成廉价的A/D转换器。ATmega48/8/16等器件具有8路10位A/D。 3. 部分AVR单片机可组成零外设元件单片机系统,使该类单片机无外加元器件即可工作,简单方便,成本又低。 4. AVR单片机可重设启动复位,以提高单片机工作的可靠性。有看门狗定时器实行安全保护,可防止程序走乱(飞),提高了产品的抗干扰能力。 四、有功能强大的定时器/计数器及通讯接口 定时/计数器T/C有8位和16位,可用作比较器。计数器外部中断和PWM(也可用作D/A)用于控制输出,某些型号的AVR单片机有3~4个PWM,是作电机无级调速的理想器件。 AVR单片机有串行异步通讯UART接口,不占用定时器和SPI同步传输功能,因其具有高速特性,故可以工作在一般标准整数频率下,而波特率可达576K。
上传时间: 2013-10-18
上传用户:二十八号
以AT89C51为核心,采用部分外围电路,实现对电风扇的智能控制.通过AT89C51对双向可控硅的控制,可实现风速的无级调速,且可以实现模拟自然风、睡眠风等,通过单片机自身的功能及外接少量电路可实现电风扇的各种定时功能,以及电风扇扇头的自由升降、波浪式摇头等各种功能.
上传时间: 2014-08-29
上传用户:xcsx1945
PHILIPS 的P89LPC900 系列FLASH 单片机部分型号提供了8 位精度的AD 转换器,为许多控制系统带来方便,诸如温度控制、运动控制等,在MCU 发出控制指令后,常常需要将执行机构的情况反馈给MCU,从而构成一个闭环系统,达到精细控制的目的。这一检测过程一般由各种传感器完成,在某些对成本有高要求的场合,为了控制成本,也常使用一些简单的分立元件替代数字传感器,通常送到MCU 接口的都是一些经过处理的电压信号,内带ADC 的芯片能够简化设计,并使成本进一步降低。一般来说,8 位的AD 精度已经足以应对,但是在一些对精度要求比较高的场合,可能会需要10 位或者更高精度,细心的用户通过仔细研究P89LPC900 单片机的特点,发现P89LPC900 系列单片机ADC 的特点非常适合进行ADC 过采样,本文正是结合P89LPC900 的特点,介绍该单片机在高精度模数转换场合的应用,以及使用过采样技术需要满足的条件和需注意事项。使这种低成本高精度的AD技术得以应用。
上传时间: 2013-10-11
上传用户:gokk
MSP430系列flash型超低功耗16位单片机MSP430系列单片机在超低功耗和功能集成等方面有明显的特点。该系列单片机自问世以来,颇受用户关注。在2000年该系列单片机又出现了几个FLASH型的成员,它们除了仍然具备适合应用在自动信号采集系统、电池供电便携式装置、超长时间连续工作的设备等领域的特点外,更具有开发方便、可以现场编程等优点。这些技术特点正是应用工程师特别感兴趣的。《MSP430系列FLASH型超低功耗16位单片机》对该系列单片机的FLASH型成员的原理、结构、内部各功能模块及开发方法与工具作详细介绍。MSP430系列FLASH型超低功耗16位单片机 目录 第1章 引 论1.1 MSP430系列单片机1.2 MSP430F11x系列1.3 MSP430F11x1系列1.4 MSP430F13x系列1.5 MSP430F14x系列第2章 结构概述2.1 引 言2.2 CPU2.3 程序存储器2.4 数据存储器2.5 运行控制2.6 外围模块2.7 振荡器与时钟发生器第3章 系统复位、中断及工作模式3.1 系统复位和初始化3.1.1 引 言3.1.2 系统复位后的设备初始化3.2 中断系统结构3.3 MSP430 中断优先级3.3.1 中断操作--复位/NMI3.3.2 中断操作--振荡器失效控制3.4 中断处理 3.4.1 SFR中的中断控制位3.4.2 中断向量地址3.4.3 外部中断3.5 工作模式3.5.1 低功耗模式0、1(LPM0和LPM1)3.5.2 低功耗模式2、3(LPM2和LPM3)3.5.3 低功耗模式4(LPM4)22 3.6 低功耗应用的要点23第4章 存储空间4.1 引 言4.2 存储器中的数据4.3 片内ROM组织4.3.1 ROM 表的处理4.3.2 计算分支跳转和子程序调用4.4 RAM 和外围模块组织4.4.1 RAM4.4.2 外围模块--地址定位4.4.3 外围模块--SFR4.5 FLASH存储器4.5.1 FLASH存储器的组织4.5.2 FALSH存储器的数据结构4.5.3 FLASH存储器的控制寄存器4.5.4 FLASH存储器的安全键值与中断4.5.5 经JTAG接口访问FLASH存储器39第5章 16位CPU5.1 CPU寄存器5.1.1 程序计数器PC5.1.2 系统堆栈指针SP5.1.3 状态寄存器SR5.1.4 常数发生寄存器CG1和CG25.2 寻址模式5.2.1 寄存器模式5.2.2 变址模式5.2.3 符号模式5.2.4 绝对模式5.2.5 间接模式5.2.6 间接增量模式5.2.7 立即模式5.2.8 指令的时钟周期与长度5.3 指令组概述5.3.1 双操作数指令5.3.2 单操作数指令5.3.3 条件跳转5.3.4 模拟指令的简短格式5.3.5 其他指令第6章 硬件乘法器6.1 硬件乘法器6.2 硬件乘法器操作6.2.1 无符号数相乘(16位×16位、16位×8位、8位×16位、8位×8位)6.2.2 有符号数相乘(16位×16位、16位×8位、8位×16位、8位×8位)6.2.3 无符号数乘加(16位×16位、16位×8位、8位×16位、8位×8位)6.2.4 有符号数乘加(16位×16位、16位×8位、8位×16位、8位×8位)6.3 硬件乘法器寄存器6.4 硬件乘法器的软件限制6.4.1 寻址模式6.4.2 中断程序6.4.3 MACS第7章 基础时钟模块7.1 基础时钟模块7.2 LFXT1与XT27.2.1 LFXT1振荡器7.2.2 XT2振荡器7.2.3 振荡器失效检测7.2.4 XT振荡器失效时的DCO7.3 DCO振荡器7.3.1 DCO振荡器的特性7.3.2 DCO调整器7.4 时钟与运行模式7.4.1 由PUC启动7.4.2 基础时钟调整7.4.3 用于低功耗的基础时钟特性7.4.4 选择晶振产生MCLK7.4.5 时钟信号的同步7.5 基础时钟模块控制寄存器7.5.1 DCO时钟频率控制7.5.2 振荡器与时钟控制寄存器7.5.3 SFR控制位第8章 输入输出端口8.1 引 言8.2 端口P1、P28.2.1 P1、P2的控制寄存器8.2.2 P1、P2的原理8.2.3 P1、P2的中断控制功能8.3 端口P3、P4、P5和P68.3.1 端口P3、P4、P5和P6的控制寄存器8.3.2 端口P3、P4、P5和P6的端口逻辑第9章 看门狗定时器WDT9.1 看门狗定时器9.2 WDT寄存器9.3 WDT中断控制功能9.4 WDT操作第10章 16位定时器Timer_A10.1 引 言10.2 Timer_A的操作10.2.1 定时器模式控制10.2.2 时钟源选择和分频10.2.3 定时器启动10.3 定时器模式10.3.1 停止模式10.3.2 增计数模式10.3.3 连续模式10.3.4 增/减计数模式10.4 捕获/比较模块10.4.1 捕获模式10.4.2 比较模式10.5 输出单元10.5.1 输出模式10.5.2 输出控制模块10.5.3 输出举例10.6 Timer_A的寄存器10.6.1 Timer_A控制寄存器TACTL10.6.2 Timer_A寄存器TAR10.6.3 捕获/比较控制寄存器CCTLx10.6.4 Timer_A中断向量寄存器10.7 Timer_A的UART应用 第11章 16位定时器Timer_B11.1 引 言11.2 Timer_B的操作11.2.1 定时器长度11.2.2 定时器模式控制11.2.3 时钟源选择和分频11.2.4 定时器启动11.3 定时器模式11.3.1 停止模式11.3.2 增计数模式11.3.3 连续模式11.3.4 增/减计数模式11.4 捕获/比较模块11.4.1 捕获模式11.4.2 比较模式11.5 输出单元11.5.1 输出模式11.5.2 输出控制模块11.5.3 输出举例11.6 Timer_B的寄存器11.6.1 Timer_B控制寄存器TBCTL11.6.2 Timer_B寄存器TBR11.6.3 捕获/比较控制寄存器CCTLx11.6.4 Timer_B中断向量寄存器第12章 USART通信模块的UART功能12.1 异步模式12.1.1 异步帧格式12.1.2 异步通信的波特率发生器12.1.3 异步通信格式12.1.4 线路空闲多机模式12.1.5 地址位多机通信格式12.2 中断和中断允许12.2.1 USART接收允许12.2.2 USART发送允许12.2.3 USART接收中断操作12.2.4 USART发送中断操作12.3 控制和状态寄存器12.3.1 USART控制寄存器UCTL12.3.2 发送控制寄存器UTCTL12.3.3 接收控制寄存器URCTL12.3.4 波特率选择和调整控制寄存器12.3.5 USART接收数据缓存URXBUF12.3.6 USART发送数据缓存UTXBUF12.4 UART模式,低功耗模式应用特性12.4.1 由UART帧启动接收操作12.4.2 时钟频率的充分利用与UART的波特率12.4.3 多处理机模式对节约MSP430资源的支持12.5 波特率计算 第13章 USART通信模块的SPI功能13.1 USART同步操作13.1.1 SPI模式中的主模式13.1.2 SPI模式中的从模式13.2 中断与控制功能 13.2.1 USART接收/发送允许位及接收操作13.2.2 USART接收/发送允许位及发送操作13.2.3 USART接收中断操作13.2.4 USART发送中断操作13.3 控制与状态寄存器13.3.1 USART控制寄存器13.3.2 发送控制寄存器UTCTL13.3.3 接收控制寄存器URCTL13.3.4 波特率选择和调制控制寄存器13.3.5 USART接收数据缓存URXBUF13.3.6 USART发送数据缓存UTXBUF第14章 比较器Comparator_A14.1 概 述14.2 比较器A原理14.2.1 输入模拟开关14.2.2 输入多路切换14.2.3 比较器14.2.4 输出滤波器14.2.5 参考电平发生器14.2.6 比较器A中断电路14.3 比较器A控制寄存器14.3.1 控制寄存器CACTL114.3.2 控制寄存器CACTL214.3.3 端口禁止寄存器CAPD14.4 比较器A应用14.4.1 模拟信号在数字端口的输入14.4.2 比较器A测量电阻元件14.4.3 两个独立电阻元件的测量系统14.4.4 比较器A检测电流或电压14.4.5 比较器A测量电流或电压14.4.6 测量比较器A的偏压14.4.7 比较器A的偏压补偿14.4.8 增加比较器A的回差第15章 模数转换器ADC1215.1 概 述15.2 ADC12的工作原理及操作15.2.1 ADC内核15.2.2 参考电平15.3 模拟输入与多路切换15.3.1 模拟多路切换15.3.2 输入信号15.3.3 热敏二极管的使用15.4 转换存储15.5 转换模式15.5.1 单通道单次转换模式15.5.2 序列通道单次转换模式15.5.3 单通道重复转换模式15.5.4 序列通道重复转换模式15.5.5 转换模式之间的切换15.5.6 低功耗15.6 转换时钟与转换速度15.7 采 样15.7.1 采样操作15.7.2 采样信号输入选择15.7.3 采样模式15.7.4 MSC位的使用15.7.5 采样时序15.8 ADC12控制寄存器15.8.1 控制寄存器ADC12CTL0和ADC12CTL115.8.2 转换存储寄存器ADC12MEMx15.8.3 控制寄存器ADC12MCTLx15.8.4 中断标志寄存器ADC12IFG.x和中断允许寄存器ADC12IEN.x15.8.5 中断向量寄存器ADC12IV15.9 ADC12接地与降噪第16章 FLASH型芯片的开发16.1 开发系统概述16.1.1 开发技术16.1.2 MSP430系列的开发16.1.3 MSP430F系列的开发16.2 FLASH型的FET开发方法16.2.1 MSP430芯片的JTAG接口16.2.2 FLASH型仿真工具16.3 FLASH型的BOOT ROM16.3.1 标准复位过程和进入BSL过程16.3.2 BSL的UART协议16.3.3 数据格式16.3.4 退出BSL16.3.5 保护口令16.3.6 BSL的内部设置和资源附录A 寻址空间附录B 指令说明B.1 指令汇总B.2 指令格式B.3 不增加ROM开销的模拟指令B.4 指令说明(字母顺序)B.5 用几条指令模拟的宏指令附录C MSP430系列单片机参数表附录D MSP430系列单片机封装形式附录E MSP430系列器件命名
上传时间: 2014-04-28
上传用户:sssnaxie
用GPIO做步进电机控制:步进电机和普通电动机不同之处是步进电机接受脉冲信号的控制。步进电机靠一种叫环形分配器的电子开关器件,通过功率放大器使励磁绕组按照顺序轮流接通直流电源。由于励磁绕组在空间中按一定的规律排列,轮流和直流电源接通后,就会在空间形成一种阶跃变化的旋转磁场,使转子步进式的转动,随着脉冲频率的增高,转速就会增大。步进电机的旋转同时与相数、分配数、转子齿轮数有关。现在比较常用的步进电机包括反应式步进电机(VR)、永磁式步进电机(PM)、混合式步进电机(HB)和单相式步进电机等。其中反应式步进电机的转子磁路由软磁材料制成,定子上有多相励磁绕组,利用磁导的变化产生转矩。现阶段,反应式步进电机获得最多的应用。步进电机和普通电机的区别主要就在于其脉冲驱动的形式,正是这个特点,步进电机可以和现代的数字控制技术相结合。不过步进电机在控制的精度、速度变化范围、低速性能方面都不如传统的闭环控制的直流伺服电动机。在精度不是需要特别高的场合就可以使用步进电机,步进电机可以发挥其结构简单、可靠性高和成本低的特点。使用恰当的时候,甚至可以和直流伺服电动机性能相媲美。
上传时间: 2013-11-05
上传用户:xinzhch
用MCP定时器控制步进电机:步进电机简介1.1.1 步进电机步进电机和普通电动机不同之处是步进电机接受脉冲信号的控制。步进电机靠一种叫环形分配器的电子开关器件,通过功率放大器使励磁绕组按照顺序轮流接通直流电源。由于励磁绕组在空间中按一定的规律排列,轮流和直流电源接通后,就会在空间形成一种阶跃变化的旋转磁场,使转子步进式的转动,随着脉冲频率的增高,转速就会增大。步进电机的旋转同时与相数、分配数、转子齿轮数有关。现在比较常用的步进电机包括反应式步进电机(VR)、永磁式步进电机(PM)、混合式步进电机(HB)和单相式步进电机等。其中反应式步进电机的转子磁路由软磁材料制成,定子上有多相励磁绕组,利用磁导的变化产生转矩。现阶段,反应式步进电机获得最多的应用。步进电机和普通电机的区别主要就在于其脉冲驱动的形式,正是这个特点,步进电机可以和现代的数字控制技术相结合。不过步进电机在控制的精度、速度变化范围、低速性能方面都不如传统的闭环控制的直流伺服电动机。在精度不是需要特别高的场合就可以使用步进电机,步进电机可以发挥其结构简单、可靠性高和成本低的特点。使用恰当的时候,甚至可以和直流伺服电动机性能相媲美。
上传时间: 2014-04-28
上传用户:joheace
该文介绍了开关磁阻电机的基本原理,设计了一种用80C196 单片机实现的开关磁阻电机驱动系统,并对该开关磁阻电机调速系统的性能进行了实验与测试,实验证明该系统运行可靠。开关磁阻电动机是磁阻电动机与电子开关驱动控制器组成的控制装置,又称开关磁阻电机驱动系统(Switched Reluctance Motor drive,简称SRD)。电机结构简单坚固,运行可靠,系统具有启动转矩高、启动电流低、调速范围宽、运行效率高,特别适用于频繁启停及正反转运行,使得SRD 成为交,直流电机驱动系统以及无刷直流电机驱动系统的强有力竞争者。目前,SRD 已用于多个领域,如:电动车驱动、家用电器、伺服与调速系统等许多领域。本文设计了一个以 80C196 单片机为控制核心的SRD 的控制系统,充分利用了SRD 电机控制方式灵活的特点,采用数字化控制系统对SR 电机进行控制,简化了硬件电路,提高了系统的可靠性。
上传时间: 2013-11-05
上传用户:18711024007
本文介绍基于 AVR 嵌入系统的三相660 伏电力智能投切开关装置的开发设计。该装置以ATmega48V 为核心器件,采用零电压接通,零电流分断技术,在投入和切断瞬间由可控硅承载线路电流,而在正常闭合工作时由电磁接触器承载电流。可广泛应用于电力谐波治理和无功补偿设备中作为开关部件,具有无冲击电流、响应时间短等特性。在工矿企业用电设备中存在大量的感性负载,如电弧炉、直流电机调速系统、整流逆变设备等,它们在消耗有功功率的同时,也占用了大量感性无功功率,致使电力功率因数下降。由于无功功率虚占了设备容量、增大了线路的电流值,而线路损耗与电流的平方成正比,因此造成电力资源的巨大浪费。另外,这些感性负载工作时还会产生大量的电力谐波,对电网造成谐波污染,使电能质量恶化,电器仪表工作异常。为了提高功率因数、治理谐波,可以采用动态滤波补偿,由电容器和电感器串联形成消谐回路,起到无功补偿和滤除谐波的作用。各种滤波补偿系统,基本都由电力电容器、铁芯电抗器、无功补偿控制器和电力投切装置等构成,其中电力投切装置负责与电网接通、切断任务,是整个补偿系统中关键部件之一。
上传时间: 2013-10-10
上传用户:气温达上千万的