虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

逻辑<b>分析</b>软件

  • 无位置传感器永磁无刷直流电动机调速控制系统.rar

    本课题提出了一套采用直流斩波技术的永磁无刷直流电机的调速控制系统。一方面研制了一种新颖的端电压逻辑换相控制策略,它通过分析电机三相绕组端电压的大小关系得出控制逆变桥开关管导通的信号。结合电机预定位起动原理,设计出的端电压逻辑信号分析处理电路,有效克服了电机起动的困难,确保电机的顺利起动,并在实验结果中得到了论证。这种完全用硬件电路来实现电机的电子换相,无疑大大降低了控制系统的成本,具有一定的实用价值。另一方面采用直流斩波技术的无刷直流电机调速系统,从而大大减小了电流的脉动。本文阐述的方法不但适用于一般的三相四线制无刷直流电机,还适用于三相三线制的电机,从而扩大了其应用的范围。 本论文先对无位置传感器永磁无刷直流电动机的结构和基本原理进行了详细的介绍;然后分别着重介绍了两个部分的设计工作:无刷直流电机的驱动控制和采用直流斩波技术的调速系统;最后给出了相关的实验结果和结论。 根据上述设计方案设计的无位置传感器永磁无刷直流电动机调速控制系统,可以实现电机的平滑起动、无振动和失步现象,具有良好的调速性能。

    标签: 无位置传感器 控制系统 无刷直流

    上传时间: 2013-04-24

    上传用户:ljmwh2000

  • 基于FPGA的调制解调器的研究和设计.rar

    当今电子系统的设计是以大规模FPGA为物理载体的系统芯片的设计,基于FPGA的片上系统可称为可编程片上系统(SOPC)。SOPC的设计是以知识产权核(IPCore)为基础,以硬件描述语言为主要设计手段,借助以计算机为平台的EDA工具进行的。 本文在介绍了FPGA与SOPC相关技术的基础上,给出了SOPC技术开发调制解调器的方案。在分析设计软件Matlab/DSP(Digital Signal Processing)。builder以及Quartus Ⅱ开发软件进行SOPC(System On a Programmable Chip)设计流程后,依据调制解调算法提出了一种基于DSP Builder调制解调器的SOPC实现方案,模块化的设计方法大大缩短了调制解调器的开发周期。 在SOPC技术开发调制解调器的过程中,用MATLAB/Simulink的图形方式调用Altera DSP Builder和其他Simulink库中的图形模块(Block)进行系统建模,在Simulink中仿真通过后,利用DSP Builder将Simulink的模型文件(.mdl)转化成通用的硬件描述语言VHDL文件,从而避免了VHDL语言手动编写系统的烦琐过程,将精力集中于算法的优化上。 基于DSP Builder的开发功能,调制解调器电路中的低通滤波器可直接调用FIRIP Core,进一步提高了开发效率。 在进行编译、仿真调试成功后,经过QuartusⅡ将编译生成的编程文件下载到ALTERA公司Cyclone Ⅱ系列的FPGA芯片EP2C5F256C6,完成器件编程,从而给出了一种调制解调器的SOPC系统实现方案。

    标签: FPGA 调制解调器

    上传时间: 2013-06-24

    上传用户:liuchee

  • 基于FPGA的磁盘阵列控制器的硬件设计与实现.rar

    随着存储技术的迅速发展,存储业务需求的不断增长,独立的磁盘冗余阵列可利用多个磁盘并行存取提高存储系统的性能。磁盘阵列技术采用硬件和软件两种方式实现,软件RAID(Redundant Array of Independent Disks)主要利用操作系统提供的软件实现磁盘冗余阵列功能,对系统资源利用率高,节省成本。硬件RAID将大部分RAID功能集成到一块硬件控制器中,系统资源占用率低,可移植性好。 分析了软件RAID的性能瓶颈,使用硬件直接完成部分计算提高软件RAID性能。针对RAID5采用FPGA(Field Programmable Gate Array)技术实现RAID控制器硬件设计,完成磁盘阵列启动、数据缓存(Cache)以及数据XOR校验等功能。基于硬件RAID的理论,提出一种基于Virtex-4的硬件RAID控制器的系统设计方案:独立微处理器和较大容量的内存;实现RAID级别迁移,在线容量扩展,在线数据热备份等高效、用户可定制的高级RAID功能;利用Virtex-4内置硬PowerPC完成RAID服务器部分配置和管理工作,运行Linux操作系统、RAID管理软件等。控制器既可以作为RAID控制卡在服务器上使用,也可作为一个独立的系统,成为磁盘阵列的调试平台。 随着集成电路的发展,芯片的体积越来越小,电路的布局布线密度越来越大,信号的工作频率也越来越高,高速电路的传输线效应和信号完整性问题越来越明显。RAID控制器属于高速电路的范畴,在印刷电路板(Printed Circuit Block, PCB)实现时分别从叠层设计、布局、电源完整性、阻抗匹配和串扰等方面考虑了信号完整性问题,并基于IBIS(I/O Buffer Information Specification)模型进行了信号完整性分析及仿真。

    标签: FPGA 磁盘阵列 控制器

    上传时间: 2013-04-24

    上传用户:jeffery

  • 基于FPGA的调制解调器

    当今电子系统的设计是以大规模FPGA为物理载体的系统芯片的设计,基于FPGA的片上系统可称为可编程片上系统(SOPC)。SOPC的设计是以知识产权核(IPCore)为基础,以硬件描述语言为主要设计手段,借助以计算机为平台的EDA工具进行的。 本文在介绍了FPGA与SOPC相关技术的基础上,给出了SOPC技术开发调制解调器的方案。在分析设计软件Matlab/DSP(Digital Signal Processing)。builder以及Quartus Ⅱ开发软件进行SOPC(System On a Programmable Chip)设计流程后,依据调制解调算法提出了一种基于DSP Builder调制解调器的SOPC实现方案,模块化的设计方法大大缩短了调制解调器的开发周期。 在SOPC技术开发调制解调器的过程中,用MATLAB/Simulink的图形方式调用Altera DSP Builder和其他Simulink库中的图形模块(Block)进行系统建模,在Simulink中仿真通过后,利用DSP Builder将Simulink的模型文件(.mdl)转化成通用的硬件描述语言VHDL文件,从而避免了VHDL语言手动编写系统的烦琐过程,将精力集中于算法的优化上。 基于DSP Builder的开发功能,调制解调器电路中的低通滤波器可直接调用FIRIP Core,进一步提高了开发效率。 在进行编译、仿真调试成功后,经过QuartusⅡ将编译生成的编程文件下载到ALTERA公司Cyclone Ⅱ系列的FPGA芯片EP2C5F256C6,完成器件编程,从而给出了一种调制解调器的SOPC系统实现方案。

    标签: FPGA 调制解调器

    上传时间: 2013-05-28

    上传用户:koulian

  • 中频数字相关解扩器研究与工程实现

    本文从工程设计和应用出发,根据某机载设备直接序列扩频(DS-SS)接收机声表面波可编程抽头延迟线(SAW.P.TDL)中频相关解扩电路的指标要求,提出了基于FPGA器件的中频数字相关解扩器的替代设计方案,通过理论分析、软件仿真、数学计算、电路设计等方法和手段,研制出了满足使用环境要求的工程化的中频数字相关器,经过主要性能参数的测试和环境温度验证试验,并在整机上进行了试验和试用,结果表明电路性能指标达到了设计要求。对工程应用中的部分问题进行了初步研究和分析,其中较详细地分析了SAW卷积器、SAW.P.TDL以及中频数字相关器在BPSK直扩信号相关解扩时的频率响应特性。 论文的主要工作在于: (1)根据某机载设备扩频接收机基于SAW.P.TDL的中频解扩电路要求,进行理论分析、电路设计、软件编程,研制基于FPGA器件的中频数字相关器,要求可在扩频接收机中原位替代原SAW相关解扩电路; (2)对中频数字相关器的主要性能参数进行测试,进行了必要的高低温等环境试验,确定电路是否达到设计指标和是否满足高低温等环境条件要求; (3)将基于FPGA的中频数字相关器装入扩频接收机,与原SAW.P.TDL中频解扩电路置换,确定与接收机的电磁兼容性、与中放电路的匹配和适应性,测试整个扩频接收机的灵敏度、动态范围、解码概率等指标是否满足接收机模块技术规范要求; (4)将改进后的扩频接收机装入某机载设备,测试与接收机相关的性能参数,整机进行高低温等主要环境试验,确定电路变化后的整机设备各项指标是否满足其技术规范要求; (5)通过对基于FPGA的中频数字相关器与SAW.P.TDL的主要性能参数进行对比测试和分析,特别是电路对频率偏移响应特性的对比分析,从而得出初步的结论。

    标签: 中频 数字 工程实现

    上传时间: 2013-06-22

    上传用户:徐孺

  • 微电脑型数学演算式隔离传送器

    特点: 精确度0.1%满刻度 可作各式數學演算式功能如:A+B/A-B/AxB/A/B/A&B(Hi or Lo)/|A|/ 16 BIT类比输出功能 输入与输出绝缘耐压2仟伏特/1分钟(input/output/power) 宽范围交直流兩用電源設計 尺寸小,穩定性高

    标签: 微电脑 数学演算 隔离传送器

    上传时间: 2014-12-23

    上传用户:ydd3625

  • 微电脑型数学演算式双输出隔离传送器

    特点(FEATURES) 精确度0.1%满刻度 (Accuracy 0.1%F.S.) 可作各式数学演算式功能如:A+B/A-B/AxB/A/B/A&B(Hi or Lo)/|A| (Math functioA+B/A-B/AxB/A/B/A&B(Hi&Lo)/|A|/etc.....) 16 BIT 类比输出功能(16 bit DAC isolating analog output function) 输入/输出1/输出2绝缘耐压2仟伏特/1分钟(Dielectric strength 2KVac/1min. (input/output1/output2/power)) 宽范围交直流两用电源设计(Wide input range for auxiliary power) 尺寸小,稳定性高(Dimension small and High stability)

    标签: 微电脑 数学演算 输出 隔离传送器

    上传时间: 2013-11-24

    上传用户:541657925

  • 80C51特殊功能寄存器地址表

    /*--------- 8051内核特殊功能寄存器 -------------*/ sfr ACC = 0xE0;             //累加器 sfr B = 0xF0;  //B 寄存器 sfr PSW    = 0xD0;           //程序状态字寄存器 sbit CY    = PSW^7;       //进位标志位 sbit AC    = PSW^6;        //辅助进位标志位 sbit F0    = PSW^5;        //用户标志位0 sbit RS1   = PSW^4;        //工作寄存器组选择控制位 sbit RS0   = PSW^3;        //工作寄存器组选择控制位 sbit OV    = PSW^2;        //溢出标志位 sbit F1    = PSW^1;        //用户标志位1 sbit P     = PSW^0;        //奇偶标志位 sfr SP    = 0x81;            //堆栈指针寄存器 sfr DPL  = 0x82;            //数据指针0低字节 sfr DPH  = 0x83;            //数据指针0高字节 /*------------ 系统管理特殊功能寄存器 -------------*/ sfr PCON  = 0x87;           //电源控制寄存器 sfr AUXR = 0x8E;              //辅助寄存器 sfr AUXR1 = 0xA2;             //辅助寄存器1 sfr WAKE_CLKO = 0x8F;        //时钟输出和唤醒控制寄存器 sfr CLK_DIV  = 0x97;          //时钟分频控制寄存器 sfr BUS_SPEED = 0xA1;        //总线速度控制寄存器 /*----------- 中断控制特殊功能寄存器 --------------*/ sfr IE     = 0xA8;           //中断允许寄存器 sbit EA    = IE^7;  //总中断允许位  sbit ELVD  = IE^6;           //低电压检测中断控制位 8051

    标签: 80C51 特殊功能寄存器 地址

    上传时间: 2013-10-30

    上传用户:yxgi5

  • TLC2543 中文资料

    TLC2543是TI公司的12位串行模数转换器,使用开关电容逐次逼近技术完成A/D转换过程。由于是串行输入结构,能够节省51系列单片机I/O资源;且价格适中,分辨率较高,因此在仪器仪表中有较为广泛的应用。 TLC2543的特点 (1)12位分辩率A/D转换器; (2)在工作温度范围内10μs转换时间; (3)11个模拟输入通道; (4)3路内置自测试方式; (5)采样率为66kbps; (6)线性误差±1LSBmax; (7)有转换结束输出EOC; (8)具有单、双极性输出; (9)可编程的MSB或LSB前导; (10)可编程输出数据长度。 TLC2543的引脚排列及说明    TLC2543有两种封装形式:DB、DW或N封装以及FN封装,这两种封装的引脚排列如图1,引脚说明见表1 TLC2543电路图和程序欣赏 #include<reg52.h> #include<intrins.h> #define uchar unsigned char #define uint unsigned int sbit clock=P1^0; sbit d_in=P1^1; sbit d_out=P1^2; sbit _cs=P1^3; uchar a1,b1,c1,d1; float sum,sum1; double  sum_final1; double  sum_final; uchar duan[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f}; uchar wei[]={0xf7,0xfb,0xfd,0xfe};  void delay(unsigned char b)   //50us {           unsigned char a;           for(;b>0;b--)                     for(a=22;a>0;a--); }  void display(uchar a,uchar b,uchar c,uchar d) {    P0=duan[a]|0x80;    P2=wei[0];    delay(5);    P2=0xff;    P0=duan[b];    P2=wei[1];    delay(5);   P2=0xff;   P0=duan[c];   P2=wei[2];   delay(5);   P2=0xff;   P0=duan[d];   P2=wei[3];   delay(5);   P2=0xff;   } uint read(uchar port) {   uchar  i,al=0,ah=0;   unsigned long ad;   clock=0;   _cs=0;   port<<=4;   for(i=0;i<4;i++)  {    d_in=port&0x80;    clock=1;    clock=0;    port<<=1;  }   d_in=0;   for(i=0;i<8;i++)  {    clock=1;    clock=0;  }   _cs=1;   delay(5);   _cs=0;   for(i=0;i<4;i++)  {    clock=1;    ah<<=1;    if(d_out)ah|=0x01;    clock=0; }   for(i=0;i<8;i++)  {    clock=1;    al<<=1;    if(d_out) al|=0x01;    clock=0;  }   _cs=1;   ad=(uint)ah;   ad<<=8;   ad|=al;   return(ad); }  void main()  {   uchar j;   sum=0;sum1=0;   sum_final=0;   sum_final1=0;    while(1)  {              for(j=0;j<128;j++)          {             sum1+=read(1);             display(a1,b1,c1,d1);           }            sum=sum1/128;            sum1=0;            sum_final1=(sum/4095)*5;            sum_final=sum_final1*1000;            a1=(int)sum_final/1000;            b1=(int)sum_final%1000/100;            c1=(int)sum_final%1000%100/10;            d1=(int)sum_final%10;            display(a1,b1,c1,d1);           }         } 

    标签: 2543 TLC

    上传时间: 2013-11-19

    上传用户:shen1230

  • AVR单片机数码管秒表显示

    #include<iom16v.h> #include<macros.h> #define uint unsigned int #define uchar unsigned char uint a,b,c,d=0; void delay(c) { for for(a=0;a<c;a++) for(b=0;b<12;b++); }; uchar tab[]={ 0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,

    标签: AVR 单片机 数码管

    上传时间: 2013-10-21

    上传用户:13788529953