在一般较低性能的三相电压源逆变器中, 各种与电流相关的性能控制, 通过检测直流母线上流入逆变桥的直流电流即可,如变频器中的自动转矩补偿、转差率补偿等。同时, 这一检测结果也可以用来完成对逆变单元中IGBT 实现过流保护等功能。因此在这种逆变器中, 对IGBT 驱动电路的要求相对比较简单, 成本也比较低。这种类型的驱动芯片主要有东芝公司生产的TLP250,夏普公司生产的PC923等等。这里主要针对TLP250 做一介绍。TLP250 包含一个GaAlAs 光发射二极管和一个集成光探测器, 8脚双列封装结构。适合于IGBT 或电力MOSFET 栅极驱动电路。图2为TLP250 的内部结构简图, 表1 给出了其工作时的真值表。TLP250 的典型特征如下:1) 输入阈值电流( IF) : 5 mA( 最大) ;2) 电源电流( ICC) : 11 mA( 最大) ;3) 电源电压( VCC) : 10~ 35 V;4) 输出电流( IO) : ± 0.5 A( 最小) ;5) 开关时间( tPLH /tPHL ) : 0.5 μ( s 最 大 ) ;6) 隔离电压: 2500 Vpms(最小)。表2 给出了TLP250 的开关特性,表3 给出了TLP250 的推荐工作条件。注: 使 用 TLP250 时 应 在 管 脚 8和 5 间 连 接 一 个 0.1 μ的 F 陶 瓷 电 容 来稳定高增益线性放大器的工作, 提供的旁路作用失效会损坏开关性能, 电容和光耦之间的引线长度不应超过1 cm。图3 和图4 给出了TLP250 的两种典型的应用电路。
标签: igbt
上传时间: 2022-06-20
上传用户:
无论是不控整流电路,还是相控整流电路,功率因数低都是难以克服的缺点.PWM整流电路是采用PWM控制方式和全控型器件组成的整流电路,本文以《电力电子技术 教材为基础,详细分析了单相电压型桥式PWM整流电路的工作原理和四种工作模式.通过对PWM整流电路进行控制,选择适当的工作模式和工作时间间隔,交流侧的电流可以按规定目标变化,使得能量在交流侧和直流侧实现双向流动,且交流侧电流非常接近正弦波,和交流侧电压同相位,可使变流装墨获得较高的功率因数.:PWM整流电路:功率因数:交流侧:直流侧传统的整流电路中,晶闸管相控整流电路的输入电流滞后于电压,其滞后角随着触发角的增大而增大,位移因数也随之降低。同时输入中谐波分量也相当大、因此功率因数很低。而二极管不控整流电路虽然位移因数接近于1,但输入电流中谐波分量很大,功率因数也较低。PWM整流电路是采用PWM控制方式和全控型器件组成的整流电路,它能在不同程度上解决传统整流电路存在的问题。把逆变电路中的SPWM控制技术用于整流电路,就形成了PWM整流电路。通过对PWM整流电路进行控制,使其输入电流非常接近正弦波,且和输入电压同相位,则功率因数近似为1。因此,PWM整流电路也称单位功率因数变流器。
上传时间: 2022-06-20
上传用户:
MOSFET和IGBT内部结构不同, 决定了其应用领域的不同.1, 由于MOSFET的结构, 通常它可以做到电流很大, 可以到上KA,但是前提耐压能力没有IGBT强。2,IGBT 可以做很大功率, 电流和电压都可以, 就是一点频率不是太高, 目前IGBT硬开关速度可以到100KHZ,那已经是不错了. 不过相对于MOSFET的工作频率还是九牛一毛,MOSFET可以工作到几百KHZ,上MHZ,以至几十MHZ,射频领域的产品.3, 就其应用, 根据其特点:MOSFET应用于开关电源, 镇流器, 高频感应加热, 高频逆变焊机, 通信电源等等高频电源领域;IGBT 集中应用于焊机, 逆变器, 变频器,电镀电解电源, 超音频感应加热等领域开关电源 (Switch Mode Power Supply ;SMPS) 的性能在很大程度上依赖于功率半导体器件的选择,即开关管和整流器。虽然没有万全的方案来解决选择IGBT还是MOSFET的问题,但针对特定SMPS应用中的IGBT 和 MOSFET进行性能比较,确定关键参数的范围还是能起到一定的参考作用。本文将对一些参数进行探讨,如硬开关和软开关ZVS ( 零电压转换) 拓扑中的开关损耗,并对电路和器件特性相关的三个主要功率开关损耗—导通损耗、传导损耗和关断损耗进行描述。此外,还通过举例说明二极管的恢复特性是决定MOSFET或 IGBT 导通开关损耗的主要因素, 讨论二极管恢复性能对于硬开关拓扑的影响。导通损耗除了IGBT的电压下降时间较长外, IGBT和功率MOSFET的导通特性十分类似。由基本的IGBT等效电路(见图1)可看出,完全调节PNP BJT集电极基极区的少数载流子所需的时间导致了导通电压拖尾( voltage tail )出现。
上传时间: 2022-06-21
上传用户:
本文只是论述由单只IGBT管子或双管做成的逆变模块,及其有关测量和判断好坏的方法。IPM模块不在本文讨论内容之内。场效应管子有开关速度快、电压控制的优点,但也有导通压降大,电压与电流容量小的缺点。而双极型器件恰恰有与其相反的特点,如电流控制、导通压降小,功率容量大等,二者复合,正所谓优势互补。IGBT管子,或者1GBT模块的由来,即基于此。从结构上看,类似于我们都早已熟悉的复合放大管,输出管为一只PNP型三极管,而激励管是一只场效应管,后者的漏极电流形成了前者的基极电流。放大能力是两管之积。IGBT管子的等效电路及符号如下图:
上传时间: 2022-06-21
上传用户:jiabin
PSCAD/MATLABsimulink/Saber/PSPICE/PSIM 仿真+硬件实物DSP+(TI)TMS320F2812,F28335,F28377,(Microship)dsPIC30F3011,FPGA,STM32F334
上传时间: 2022-06-24
上传用户:
1引言现代电力电子学是研究用大功率半导体器件对电能进行变换与控制,达到节能、省材、高频、优化之目的。随着电力电子学的发展,工作频率已逐步由低频,向中频、高频方向发展。在电力电子学中,一般定义工作在400赫兹以下的频率称为低频;400赫兹以上、10千赫兹以下为中频;10千赫兹以上为高频。在实践中,人们逐渐认识到高频化潜在着巨大的优越性甚至不仅仅是量的变化,而是质的变化,是电力电子发展的飞跃。就电源而言,从工作在低频下50Hz传统直流电源到今天的开关电源(指广义开关电源)不仗达到小塑轻量化的自的,而直潜在着对应用对象的工艺性能有极大的改善如高频逆变式整流焊机电源、高频直流电渡电源等。然而这些电源都要进行高频整流。高频整流中一些在低频整流中被忽视的问题而在高频设计中必须被认真考虑,予以重视。
标签: 高频
上传时间: 2022-06-26
上传用户:
目前,小功率通用或专用变频器以及交流变频家电产品大多采用典型的交-直-交电压型逆变器(vsi)结构,逆变实现一般采用双极性 pwm调制技术,即在同一逆变桥臂上、下 2个开关管施加互补的触发信号。由于开关管自身的特性:开通和关断都需要一定的时间,且关断时间比开通时间要长。因此,若按照理想的触发信号控制开关管的开通和关断,就可能导致同一桥臂的2个开关管直通而损坏开关器件。为了防止这种直通现象的发生,必须在它们开通和关断之间插入一定延时的时间,这个延时时间就称为死区。死区时间内2个开关管都处于关断状态,负载电流通过反并联二极管续流,负载电压不受开关管控制,由此造成负载电压波形发生畸变,逆变器的平均输出电压降低,并产生与死区时间以及调制比成正比的3,5,7,…次谐波分量,进而影响到电动机的输入电流和运行质量。当逆变器工作在低输出频率、开关频率较高和负载感性很弱时这种影响相当严重[1.2]。为此,需要对死区的影响进行补偿,以提高变频器的输出性能和改善电动机的运行工况。常用的补偿方法有电流反馈型和电压反馈型,也有单边补偿与双边补偿、纯硬件补偿与硬件软件结合补偿等具体手段,但其工作原理相似,都是产生一个与死区引起的误差波形反向的波形,以抵消死区的作用[3.10].motorola公司推出的电动机专用控制芯片mr16内部集成了专门的死区补偿硬件电路,只需要简单的外围电流极性检测和简单的软件编程就可以实现可靠的死区补偿
上传时间: 2022-06-26
上传用户:ttalli
《现代永磁同步电机控制原理及MATLAB仿真》的随书matlab仿真文件,囊括了各种电机的不同控制算法的仿真模型,对于电机控制的算法理解十分有用。主要内容包括三相永磁同步电机的数学建模及矢量控制技术、三相电压源逆变器PWM 技术、三相永磁同步电机的直接转矩控制、三相永磁同步电机的无传感器控制技术、六相永磁同步电机的数学建模及矢量控制技术、六相电压源逆变器WM 技术和五相永磁同步电机的数学建模及矢量控制技术等。每种控制技术都通过了MATLAB 仿真建模并进行了仿真分析。
上传时间: 2022-06-30
上传用户:
主控平台:STM32F334C8T6逆变拓扑:BUCK功能:降压充电,MPPT控制,充电电流20A,最大输入电压60V描述:本方案适用于光伏电池充电;
上传时间: 2022-07-01
上传用户:wangshoupeng199
基于51无刷电机控制器,制作简单,仿真已经实验成功。此驱动电路采用以3片IR2110为中心的6个N沟道的MOSFET管组成的三相全桥逆变电路,仅对上桥臂功率MOSFET管进行PWM调制的控制方式。其输入是以功率地为地的PWM波,送到IR2110的输入端口,输出控制N沟道的功率驱动管MOSFET的开关,由此驱动无刷直流电动机。
上传时间: 2022-07-02
上传用户:XuVshu