提出一种永磁同步电机新的宽范围弱磁控制策略,根据电机在不同转速段运行时的转矩特性,考虑逆变器的输出电压能力及电机的电流约束条件,以输出最大转矩为目标,分析得出全速范围内的电流矢量控制算法。该方法将全速段分为四个运行区间,可实现恒转矩运行与弱磁控制的快速平滑过渡,使系统在额定转速以下具有恒转矩输出,在高速运行时实现恒功率特性。仿真及实验结果表明,提出的方法可有效拓宽电机的转速运行范围,具有较快的动态响应性能。
标签: 永磁同步电机
上传时间: 2021-12-12
上传用户:
之前主板坏了,找了好久,才找到这个图纸,根据图纸修好了电源部分电路。分析给大家。
标签: asus
上传时间: 2021-12-29
上传用户:wangshoupeng199
BMS 与储能 PCS 通信协议(RS485 接口)1.1、协议说明1) 采用RS485通讯接口;2) 标准MODBUS规约;3) 传输方式:异步方式;4) 数据传送速率:9600bit/s,BMS端主动发送,上送间隔500mS;5) 数据传送格式:起始位1位,数据位8位,停止位1位,无校验,低字节在前;6) CRC16:从校验信息字节内容1到信息字节内容14做CRC校验。
上传时间: 2022-01-05
上传用户:
功能描述:该设备电路主要有非接触式体温测量模块、温度状态指示电路、显示电路、MCU主控芯片、电源管理电路、按键等构成。1、非接触式体温测量模块:采用GY-906-BCC非接触式体温测量模块,使用标准的IIC通信协议,温度范围0到50度温度范围内精度可达0.5度,通过校准后,测量分辨率可以达到0.02度,符合项目使用要求。2、温度状态指示电路:报警装置采用5V有源蜂鸣器,作为测温仪的超温报警。3、显示电路:采用0.56英寸共阳的三位数码管CL5631AG,显示温度值。4、主控芯片:主控板采用STM8S103K3T6C主控芯片,完全符合该项目的使用要求。5、电源管理电路:供电模块使用18650锂电池供电,内部有锂电池充电电路,可以使用标准的USB口进行充电。6、设备外壳:设备外壳采用3D打印技术实现。但为了简化使用,外壳就是多余部件,相关元器件和PCB板组成了测温仪的支持、固定功能。原理图:PCB:
标签: 红外测温
上传时间: 2022-02-13
上传用户:qdxqdxqdxqdx
本文介绍了一种基于低负载系数采样电阻的、可用于电感负载的精密可调恒流源的设计方案文章首先分析了恒流源基本原理与串联负反馈式恒流源电路,论述了影响恒流源稳度的主要因索以及误差分配原则,然后介绍了可用于电感负载的可调精密恒流源的基本框架,主要包括:低负荷系数采样电阻以及基准电压模块、单片机最小系统、主电源模块、调整管压降反馈电路、保护与补偿电路电源管理电路以及电流测试电路。该设计主要完成了以下工作:第一,制成了可以输出0-10V之间任意电压值的高精度电压基准模,短时间内输出电压的相对标准差达234×10,电压稳定度(时间漂移)为34×10Vh。将其作为恒流源的电压参考源,最终实现了0-1A可调功能。第二,完成了19低负荷系数采样电阻的测试与制作,通过实验测得其负载系数为3.58×10°gW温度系数为034ppm℃,长期稳定性为±048pm30h第三,通过设计感性负载补偿电路、调整电路结构、调整控制算法,最终使恒流源适用于感性负载。第四,设计了主电源控制方法,实现了恒流源的自动调节,最终使得本设计在输出0-1A之间任何电流携带300W以下任何负载都能保证同样的精度,第五,设计了调整管压降反馈电路,单片机通过视管管制比电倾出电,实取了词整管底降的自动,解块了由于负载变化引起的调整管漏源电流下降所导致的电流漂移。最终的测试结果表明,正常工作时设备的输出1A电流相对标准差为297×103,电流稳定度(时间漂移)为-3.6×10730min,可调恒流源的微分非线性为0.59SB,最大负载能力300W,输出阻抗120MQ关键词可调恒流源感性负载高稳定性电压基准
标签: 恒流源
上传时间: 2022-04-02
上传用户:
摘要:新能源汽车的发展有三个路径:改进现有的发动机和整车系统的能效;在现有发动机上使用清洁的非石油燃料;汽车电动化。综合考量这三个路径,汽车电动化是现今的发展所趋。随着全国充电站的不断兴建,充电设备对电网的污染日益严重,消除电网谐波污染,提高功率因数是这些充电设备的必要前提。本文提出的基于三相PFC充电模块,具有电网谐波小、功率因数高等特点,可供充电站备选使用。文章介绍了电力电子领域整流器的发展概况,对多种实现三相整流的控制方法进行了总结,指出了各自的优缺点,特别是对电网的谐波污染。相比之下,电压型空间矢量调制方法能实现四象限运行,特别是在整流状态下,SVPWM控制方法能实现单位功率因数变流,电流波形畸变小。该充电模块很好地解决了新能源电动汽车充电设备对电网的谐波污染、电流波形畸变严重等问题。文章详细推导了 SVPWM控制算法,并在 Matlab/Simulink环境下搭建了三相电压型PWM整流器。并选用飞思卡尔公司的DSP56F803实现三相整流器的数字化,并且成功应用在亚运会充电站充电设备上,验证了该三相PFC充电模块的良好性能。关键词:电动汽车:充电模块;整流器;SVPWM;DSPS6F803;我们国家现在正经历一个新能源产业高速发展的历程,各种新能源产业蒸蒸日上,诸如风力发电、光伏逆变、电动汽车。汽车电动化是一个有着广阔前景的产业,许多汽车巨头已有正式的电动汽车产品问世,并投入使用。从国外情况来看,电动汽车的发展有以下几个特点:第一是混合动力汽车已经开始大规模产业化,第二是插电式混合动力汽车越来越受到重视,第三是纯电动汽车开始进入市场,并有快速增长的趋势。就我们国家而言,国家电网、南方电网、中海油、中石油在电动汽车产业里也起着至关重要的作用,他们对电动汽车产业的发展方向甚至有着决定性的引导。
上传时间: 2022-04-03
上传用户:trh505
part1也已上传:https://dl.21ic.com/download/part1-385449.html 本书系统介绍电容器的基础知识及在各种实际应用电路中的工作原理,包括 RC 积分、 RC 微分、滤波电容、旁路电容、去耦电容、耦合电容、谐振电容、自举电容、 PN 结电容、加速电容、密勒电容、安规电容等。本书强调工程应用,包含大量实际工作中的应用电路案例讲解,涉及高速 PCB、高频电子、运算放大器、功率放大、开关电源等多个领域,内容丰富实用,叙述条理清晰,对工程师系统掌握电容器的实际应用有很大的帮助,可作为初学者的辅助学习教材,也可作为工程师进行电路设计、制作与调试的参考书。第 1 章 电容器基础知识第 2 章 电容器标称容值为什么这么怪第 3 章 电容器为什么能够储能第 4 章 介电常数是如何提升电容量的第 5 章 介质材料是如何损耗能量的第 6 章 绝缘电阻与介电常数的关系第 7 章 电容器的失效模式第 8 章 RC 积分电路的复位应用第 9 章 门电路组成的积分型单稳态触发器第 10 章 555 定时芯片应用:单稳态负边沿触发器第 11 章 RC 多谐振荡器电路工作原理第 12 章 这个微分电路是冒牌的吗第 13 章 门电路组成的微分型单稳态触发器第 14 章 555 定时器芯片应用:单稳态正边沿触发器第 15 章 电容器的放电特性及其应用第 16 章 施密特触发器构成的多谐振荡器第 17 章 电容器的串联及其应用第 18 章 电容器的并联及其应用第 19 章 电源滤波电路基本原理第 20 章 从低通滤波器认识电源滤波电路第 21 章 从电容充放电认识低通滤波器第 22 章 降压式开关电源中的电容器第 23 章 电源滤波电容的容量越大越好吗第 24 章 电源滤波电容的容量多大才合适第 25 章 RC 滞后型移相式振荡电路第 26 章 电源滤波电容中的战斗机:铝电解电容第 27 章 旁路电容工作原理(数字电路)第 28 章 旁路电容 0.1μF 的由来(1)第 29 章 旁路电容 0 1μF 的由来(2)第 30 章 旁路电容的 PCB 布局布线第 31 章 PCB 平面层电容可以做旁路电容吗第 32 章 旁路电容工作原理(模拟电路)第 33 章 旁路电容与去耦电容的联系与区别第 34 章 旁路电容中的战斗机:陶瓷电容第 35 章 交流信号是如何通过耦合电容的第 36 章 为什么使用电容进行信号的耦合第 37 章 耦合电容的容量多大才合适
标签: 电容
上传时间: 2022-05-07
上传用户:
part2也已上传:https://dl.21ic.com/download/part2-385450.html 本书系统介绍电容器的基础知识及在各种实际应用电路中的工作原理,包括 RC 积分、 RC 微分、滤波电容、旁路电容、去耦电容、耦合电容、谐振电容、自举电容、 PN 结电容、加速电容、密勒电容、安规电容等。本书强调工程应用,包含大量实际工作中的应用电路案例讲解,涉及高速 PCB、高频电子、运算放大器、功率放大、开关电源等多个领域,内容丰富实用,叙述条理清晰,对工程师系统掌握电容器的实际应用有很大的帮助,可作为初学者的辅助学习教材,也可作为工程师进行电路设计、制作与调试的参考书。第 1 章 电容器基础知识第 2 章 电容器标称容值为什么这么怪第 3 章 电容器为什么能够储能第 4 章 介电常数是如何提升电容量的第 5 章 介质材料是如何损耗能量的第 6 章 绝缘电阻与介电常数的关系第 7 章 电容器的失效模式第 8 章 RC 积分电路的复位应用第 9 章 门电路组成的积分型单稳态触发器第 10 章 555 定时芯片应用:单稳态负边沿触发器第 11 章 RC 多谐振荡器电路工作原理第 12 章 这个微分电路是冒牌的吗第 13 章 门电路组成的微分型单稳态触发器第 14 章 555 定时器芯片应用:单稳态正边沿触发器第 15 章 电容器的放电特性及其应用第 16 章 施密特触发器构成的多谐振荡器第 17 章 电容器的串联及其应用第 18 章 电容器的并联及其应用第 19 章 电源滤波电路基本原理第 20 章 从低通滤波器认识电源滤波电路第 21 章 从电容充放电认识低通滤波器第 22 章 降压式开关电源中的电容器第 23 章 电源滤波电容的容量越大越好吗第 24 章 电源滤波电容的容量多大才合适第 25 章 RC 滞后型移相式振荡电路第 26 章 电源滤波电容中的战斗机:铝电解电容第 27 章 旁路电容工作原理(数字电路)第 28 章 旁路电容 0.1μF 的由来(1)第 29 章 旁路电容 0 1μF 的由来(2)第 30 章 旁路电容的 PCB 布局布线第 31 章 PCB 平面层电容可以做旁路电容吗第 32 章 旁路电容工作原理(模拟电路)第 33 章 旁路电容与去耦电容的联系与区别第 34 章 旁路电容中的战斗机:陶瓷电容第 35 章 交流信号是如何通过耦合电容的第 36 章 为什么使用电容进行信号的耦合第 37 章 耦合电容的容量多大才合
标签: 电容
上传时间: 2022-05-07
上传用户:
这是一个带有充电管理的无线€€充,适合600mA内的小功率方案,只要接个锂电池就OK 了CPS3039是一种高效、符合QI要求,单片无线电€€源接收和充电管理的产品,。它集成接收模块和线性充电模块,最多支持5W输出 。集成线性充电模块提供最低无线解决方案,节省印刷电路板成本。它是非常适合低功率电池供电应用。CPS3039通过集成低RDS(ON)全桥同步整流电路 ,转换从无线接收线接收到的交流能量信号。CPS3039集成了一个MCU和片上存储器提供用户可编程性,以及高级电源管理电路实现极低备用电源。CPS3039集成了精确的故障保护电路:包括过温、过流、过流电压保护,确保安全运行。一个连接温度传感器和外部NTC接口,集成了温度感测和补偿。CPS3039有QFN 3mmx 4mm封装。该产品的额定值在温度范围0至85摄氏度。
上传时间: 2022-06-04
上传用户:
本文只是论述由单只IGBT管子或双管做成的逆变模块,及其有关测量和判断好坏的方法。IPM模块不在本文讨论内容之内。场效应管子有开关速度快、电压控制的优点,但也有导通压降大,电压与电流容量小的缺点。而双极型器件恰恰有与其相反的特点,如电流控制、导通压降小,功率容量大等,二者复合,正所谓优势互补。IGBT管子,或者1GBT模块的由来,即基于此。从结构上看,类似于我们都早已熟悉的复合放大管,输出管为一只PNP型三极管,而激励管是一只场效应管,后者的漏极电流形成了前者的基极电流。放大能力是两管之积。IGBT管子的等效电路及符号如下图:
上传时间: 2022-06-21
上传用户:jiabin