用matlab实现信号系统及系统响应,采取界面编程,功能有时域采样分析,卷积验证,启动相应
上传时间: 2016-12-11
上传用户:lgnf
现代雷达普遍采用相参信号处理,而如何获得高精度基带数字正交( I , Q) 信号是整个系统信号处理成败的关键,以前通常的做法是采用模拟相位检波器得到I、Q信号,其正交性能一般为:幅度平衡在2 % 左右, 相位正交误差在2°左右,即幅相误差引入的镜像功率在- 34dB 左右。这限制了信号处理器性能的提高, 为此, 近年来提出了对低中频直接采样恢复I、Q 信号的数字相位检波器。随着高位、高速A/ D 的研制成功和普遍应用,使得数字相位检波方法的实现成为可能。 对信号进行中频直接采样和数字正交处理后,产生的I 支路和Q 支路信号序列在时间上会错开一个采样间隔,需要进行定序处理,恢复成同步输出的I、Q 两路信号序列。
上传时间: 2016-12-27
上传用户:yxgi5
包中包含3个CC2430的A/D转换测试程序。程序基于IAR软件编写的。分别通过A/D通道采集片内温度、电压并转化为数字信号,然后通过串口发送到PC,在PC机可以看到采样结果。估计对开发无线传感器网络的相关人士比较重要。
上传时间: 2016-12-29
上传用户:dancnc
上采样和内插,使得系统中同时出现的窄带信号和宽带信号能够采用适合本信号的采样率
上传时间: 2016-12-29
上传用户:hakim
电子闹钟 clk: 标准时钟信号,本例中,其频率为4Hz; clk_1k: 产生闹铃音、报时音的时钟信号,本例中其频率为1024Hz; mode: 功能控制信号; 为0:计时功能; 为1:闹钟功能; 为2:手动校时功能; turn: 接按键,在手动校时功能时,选择是调整小时,还是分钟; 若长时间按住该键,还可使秒信号清零,用于精确调时; change: 接按键,手动调整时,每按一次,计数器加1; 如果长按,则连续快速加1,用于快速调时和定时; hour,min,sec:此三信号分别输出并显示时、分、秒信号, 皆采用BCD 码计数,分别驱动6 个数码管显示时间; alert: 输出到扬声器的信号,用于产生闹铃音和报时音; 闹铃音为持续20 秒的急促的“嘀嘀嘀”音,若按住“change”键, 则可屏蔽该音;整点报时音为“嘀嘀嘀嘀—嘟”四短一长音; LD_alert: 接发光二极管,指示是否设置了闹钟功能; LD_hour: 接发光二极管,指示当前调整的是小时信号; LD_min: 接发光二极管,指示当前调整的是分钟信号
上传时间: 2017-01-02
上传用户:顶得柱
本文提出在数字移动通信中子带滤波器组处理可以提高不同阵元信号的相关性,从而能改善自适应阵列抑制码间干扰(ISI)和共信道干扰(CCI)的能力.在文[6]的基础上,本文研究了子带滤波器组在宽带自适应天线旁 瓣相消中的应用,对其原理进行了理论分析,提出了有效的子带处理方法.经研究表明,子带滤波器组处理能有效增加主、辅助天线信号的相关性,从而提高系统干扰相消比.而且适当的过采样能使系统干扰相消比进一步提高.计算机仿真结果和实测雷达数据处理结果证实了子带处理方法的有效性和理论分析的正确性.
上传时间: 2014-01-25
上传用户:redmoons
本文提出在数字移动通信中子带滤波器组处理可以提高不同阵元信号的相关性,从而能改善自适应阵列抑制码间干扰(ISI)和共信道干扰(CCI)的能力.在文[6]的基础上,本文研究了子带滤波器组在宽带自适应天线旁 瓣相消中的应用,对其原理进行了理论分析,提出了有效的子带处理方法.经研究表明,子带滤波器组处理能有效增加主、辅助天线信号的相关性,从而提高系统干扰相消比.而且适当的过采样能使系统干扰相消比进一步提高.计算机仿真结果和实测雷达数据处理结果证实了子带处理方法的有效性和理论分析的正确性.
上传时间: 2013-12-08
上传用户:wang0123456789
波形发生器设计与总结报告 摘 要:本设计是基于信号发生芯片MAX038的多功能波形发生器。由MAX038、D\A转换,MAX414运算放大器、LCD12864显示、单片机以及外围电路构成的多波形发生器。利用MAX038产生正弦波、三角波、锯齿波、方波的波形,单片机通过D\A转换对MAX038的控制,从而实现频率和占空比的步进调控,在1Hz~2.4MHz内产生任意正弦波、三角波、锯齿波和方波。 采用MAX414和TLC549构成信号放大采样电路,用液晶模块LCD12864可实现实时显示波形的类型、频率、幅度和占空比等功能;。经多次测试,本设计整机具有波形清晰,频率、相位和幅度相对稳定,没有明显的失真,采用键盘输入,LCD显示,操作显示界面简单直观,实现按步进进行调整。 关键词:单片机 MAX038 D\A转换 占空比 LCD12864
上传时间: 2017-01-10
上传用户:xymbian
选取windows系统自带的ding.wav信号作为分析对象,在Matlab软件平台下,利用函数wavread对音频信号进行采样,记住采样频率和采样点数,听一下原始声音sound(y, fs, bits)。 (2)音频信号的频谱分析,先画出音频信号的时域波形;然后对音频号进行快速傅里叶变换fft(y,N),N取32768,画出信号的频谱特性,加深对频谱特性的理解。 (3)根据频谱,反演时域特性,画出时域波形。寻找幅值最大的两个频率,此频率除以fft点数在乘以采样频率就是信号的主频,即可合成信号的时域图形,听一下声音。 (4)对原音频信号进行1024点的分段付立业分析meshgrid (5)根据主要频线合成音频,并画出时域图形,试听合成效果。 (6)采用线性插值(linspace)和傅立业反变换(fliplr, ifft)分别合成音频,并画出时域图形,试听效果。
上传时间: 2013-12-16
上传用户:dengzb84
采用VHDL语言设计一个4通道的数据采集控制模块。系统的功能描述如下: 1.系统主时钟为100 MHz。 2.数据为16位-数据线上连续2次00FF后数据传输开始。 3.系统内部总线宽度为8位。 4.共有4个通道(ch1、ch2、ch3、ch4),每个通道配备100 Bytes的RAM,当存满数据后停止数据采集并且相应通道的状态位产生报警信号。 5.数据分为8位串行输出,输出时钟由外部数据读取电路给出。 6.具备显示模块驱动功能。由SEL信号设置显示的通道,DISPLAY信号启动所选通道RAM中数值的显示过程。数值顺次显示一遍后显示结束,可以重新设定SEL的值选择下一个通道。模块数据线为8位,显示器件为4个8段LED。 7.数据采集模式如下:单通道采集(由SEL信号选择通道),多通道顺次采集(当前通道采满后转入下一通道),多通道并行采集(每通道依次采集一个数据)。模式由控制信号MODE选择,采集数据的总个数由NUM_COLLECT给出。 8.数据采集过程中不能读取,数据读取过程中不能采集
上传时间: 2013-12-25
上传用户:zycidjl