虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

蚁群遗传算法

  • 遗传算法的程序 遗传 算 法 (GeneticA lgorithm,G A)是一种大规模并行搜索优化算法

    遗传算法的程序 遗传 算 法 (GeneticA lgorithm,G A)是一种大规模并行搜索优化算法,它模 拟了达尔文“适者生存”的进化规律和随机信息交换思想,仿效生物的遗传方式, 从随机生成的初始解群出发,开始搜索过程。解群中的个体称为染色体,它是一 串符号,可以是一个二进制字符串,也可以是十进制字符串或采用其他编码方式 形成的码串。对父代(当前代)群体进行交叉、变异等遗传操作后,根据个体的 适应度〔fitness)进行选择操作,适应度高的个体有较高的概率被选中并复制到下 一代,如此产生的子代通常优于父代,这个过程称为进化。上述过程循环执行直 至满足停机条件,最终使优化过程以大概率趋于全局最优解

    标签: GeneticA lgorithm 算法 程序

    上传时间: 2015-09-25

    上传用户:lili123

  • 一个蚁群算方法的研究文章

    一个蚁群算方法的研究文章,很权威的。学习了很久,在现代智能优化算法中很重要

    标签: 法的研究

    上传时间: 2013-12-09

    上传用户:mpquest

  • 粒子群优化算法(PSO)是一种进化计算技术(evolutionary computation)

    粒子群优化算法(PSO)是一种进化计算技术(evolutionary computation),有Eberhart博士和kennedy博士发明。源于对鸟群捕食的行为研究 PSO同遗传算法类似,是一种基于叠代的优化工具。系统初始化为一组随机解,通过叠代搜寻最优值。但是并没有遗传算法用的交叉(crossover)以及变异(mutation)。而是粒子在解空间追随最优的粒子进行搜索。详细的步骤以后的章节介绍 同遗传算法比较,PSO的优势在于简单容易实现并且没有许多参数需要调整。目前已广泛应用于函数优化,神经网络训练,模糊系统控制以及其他遗传算法的应用领域

    标签: evolutionary computation PSO 粒子群

    上传时间: 2016-04-26

    上传用户:zhuimenghuadie

  • 粗粒度并行遗传算法

    粗粒度并行遗传算法,用于流域梯级水电站群的优化调度。

    标签: 粗粒度 并行 算法

    上传时间: 2016-12-15

    上传用户:凤临西北

  • 基于粒子群优化的神经网络训练算法研究论文   摘 要:  本文提出了基于连接结构优化的粒子群优化算法(SPSO) 用于神经网络训练,该算法在训练神经网络权 值的同时优化其连接结构,删除冗余连接,使

    基于粒子群优化的神经网络训练算法研究论文   摘 要:  本文提出了基于连接结构优化的粒子群优化算法(SPSO) 用于神经网络训练,该算法在训练神经网络权 值的同时优化其连接结构,删除冗余连接,使神经网络获得与模式分类问题匹配的信息处理能力. 经SPSO 训练的神经 网络应用于Iris ,Ionosphere 以及Breast cancer 模式分类问题,能够部分消除冗余分类参数及冗余连接结构对分类性能 的影响. 与BP 算法及遗传算法比较,该算法在提高分类误差精度的同时可加快训练收敛的速度. 仿真结果表明,SPSO是有效的神经网络训练算法

    标签: SPSO 神经网络 连接 粒子群优化

    上传时间: 2013-11-30

    上传用户:myworkpost

  • 针对基于最小二乘法的ICP 曲面匹配算法难以处理待比较曲面的局部大变形问题, 提出一种改进算 法。即采用遗传算法确定曲面初始相对位置以保证匹配优化结果为全局最优值, 利用ICP 算法匹配结果构造

    针对基于最小二乘法的ICP 曲面匹配算法难以处理待比较曲面的局部大变形问题, 提出一种改进算 法。即采用遗传算法确定曲面初始相对位置以保证匹配优化结果为全局最优值, 利用ICP 算法匹配结果构造 偏差阈值, 以此阈值过滤点群后再以最小二乘法进行匹配处理, 消除局部大变形影响, 获得合理的变换矩阵。以此变换矩阵变换初始点群再进行误差计算, 从而获得理想的匹配结果

    标签: ICP 算法 最小二乘法 匹配算法

    上传时间: 2017-07-02

    上传用户:qb1993225

  • 出版社:高等教育出版社 作者:汪定伟 简介 高等教育出版社2007年4月出版。 本书主要介绍近年来产生的多种智能优化算法

    出版社:高等教育出版社 作者:汪定伟 简介 高等教育出版社2007年4月出版。 本书主要介绍近年来产生的多种智能优化算法,包括遗传算法、禁忌搜索、模拟退火、蚁群优化算法、粒子群优化算法、捕食搜索算法和动态进化算法等算法的产生、算法的基本思想和理论、算法的基本构成、计算步骤、主要的变型算法及几个数值举例...

    标签: 2007 出版社 优化算法

    上传时间: 2014-11-14

    上传用户:helmos

  • 《蚁群优化》书本的源代码~ 该书是蚁群优化创始人DM的著作

    《蚁群优化》书本的源代码~ 该书是蚁群优化创始人DM的著作,是蚁群算法的最最权威的著作,该代码也是最最权威的蚁群算法的代码~ 对研究蚁群算法的研究生或者博士生特别有用~

    标签: 源代码

    上传时间: 2017-08-21

    上传用户:xymbian

  • 遗传算法的MATLAB代码

    遗传算法为群体优化算法,也就是从多个初始解开始进行优化,每个解称为一个染色体,各染色体之间通过竞争、合作、单独变异,不断进化。 优化时先要将实际问题转换到遗传空间,就是把实际问题的解用染色体表示,称为编码,反过程为解码,因为优化后要进行评价,所以要返回问题空间,故要进行解码。SGA采用二进制编码,染色体就是二进制位串,每一位可称为一个基因;解码时应注意将染色体解码到问题可行域内。 遗传算法模拟“适者生存,优胜劣汰”的进化机制,染色体适应生存环境的能力用适应度函数衡量。对于优化问题,适应度函数由目标函数变换而来。一般遗传算法求解最大值问题,如果是最小值问题,则通过取倒数或者加负号处理。SGA要求适应度函数>0,对于<0的问题,要通过加一个足够大的正数来解决。这样,适应度函数值大的染色体生存能力强。 遗传算法有三个进化算子:选择(复制)、交叉和变异。 SGA中,选择采用轮盘赌方法,也就是将染色体分布在一个圆盘上,每个染色体占据一定的扇形区域,扇形区域的面积大小和染色体的适应度大小成正比。如果轮盘中心装一个可以转动的指针的话,旋转指针,指针停下来时会指向某一个区域,则该区域对应的染色体被选中。显然适应度高的染色体由于所占的扇形区域大,因此被选中的几率高,可能被选中多次,而适应度低的可能一次也选不中,从而被淘汰。算法实现时采用随机数方法,先将每个染色体的适应度除以所有染色体适应度的和,再累加,使他们根据适应度的大小分布于0-1之间,适应度大的占的区域大,然后随机生成一个0-1之间的随机数,随机数落到哪个区域,对应的染色体就被选中。重复操作,选出群体规模规定数目的染色体。这个操作就是“优胜劣汰,适者生存”,但没有产生新个体。 交叉模拟有性繁殖,由两个染色体共同作用产生后代,SGA采用单点交叉。由于SGA为二进制编码,所以染色体为二进制位串,随机生成一个小于位串长度的随机整数,交换两个染色体该点后的那部分位串。参与交叉的染色体是轮盘赌选出来的个体,并且还要根据选择概率来确定是否进行交叉(生成0-1之间随机数,看随机数是否小于规定的交叉概率),否则直接进入变异操作。这个操作是产生新个体的主要方法,不过基因都来自父辈个体。 变异采用位点变异,对于二进制位串,0变为1,1变为0就是变异。采用概率确定变异位,对每一位生成一个0-1之间的随机数,看是否小于规定的变异概率,小于的变异,否则保持原状。这个操作能够使个体不同于父辈而具有自己独立的特征基因,主要用于跳出局部极值。 遗传算法认为生物由低级到高级进化,后代比前一代强,但实际操作中可能有退化现象,所以采用最佳个体保留法,也就是曾经出现的最好个体,一定要保证生存下来,使后代至少不差于前一代。大致有两种类型,一种是把出现的最优个体单独保存,最后输出,不影响原来的进化过程;一种是将最优个体保存入子群,也进行选择、交叉、变异,这样能充分利用模式,但也可能导致过早收敛。 由于是基本遗传算法,所以优化能力一般,解决简单问题尚可,高维、复杂问题就需要进行改进了。 下面为代码。函数最大值为3905.9262,此时两个参数均为-2.0480,有时会出现局部极值,此时一个参数为-2.0480,一个为2.0480。算法中变异概率pm=0.05,交叉概率pc=0.8。如果不采用最优模式保留,结果会更丰富些,也就是算法最后不一定收敛于极值点,当然局部收敛现象也会有所减少,但最终寻得的解不一定是本次执行中曾找到过的最好解。

    标签: 遗传算法

    上传时间: 2015-06-04

    上传用户:芃溱溱123

  • matlab蚁群算法ppt

    改进的蚁群聚类算法ppt,有原理介绍。背景介绍

    标签: matlab ppt 蚁群算法

    上传时间: 2016-06-17

    上传用户:hhkpj