此程序源码为脉宽测量电路vhdl代码.适合新手学习参考
上传时间: 2022-04-24
上传用户:
磁脉冲调制器资料汇编
标签: 磁脉冲调制器
上传时间: 2022-05-15
上传用户:
使用verilog实现全数字16QAM调制器,载波频率1MHZ,数据比特流的速率为100Kbps
上传时间: 2022-05-22
上传用户:
近年来,随着超声学研究的发展,功率超声技术得到了越来越广泛的应用。超声波清洗技术作为功率超声技术的一个分支,以清洗速度快、效果好、易于实现自动化等优点,为传统工业清洗领域注入了新鲜的血液。作为超声波清洗机的核心组件,超声逆变电源的设计一直是超声波清洗系统设计的关键环节,它性能的好坏很大程度上决定了最终的清洗效果。以往的超声逆变电源的设计通常是基于模拟集成控制芯片的,这种实现方式在频率、功率控制的精度和速度上以及系统的灵活性、稳定性方面存在着一定的局限性,限制了超声逆变电源的发展。数字控制技术的出现,很好地弥补了上述缺陷,因此本课题将数字控制技术引入到超声逆变电源控制电路的设计中是很有意义的。 本文首先对超声逆变电源的基本结构和工作原理做了简单介绍,针对超声逆变电源各部分的结构特点,并结合一些传统设计方案优缺点的分析,确定了二极管不控整流的整流电路设计方案、电压源型串联谐振逆变器的逆变电路实现方案、基于锁相环的频率跟踪实现方案、和基于PWM脉宽调制技术的功率调节实现方案。接着,文章详细介绍了频率自动跟踪和功率控制的具体实现方法,利用数学推理和波形分析的方式阐明了方案的可行性,并通过软件仿真验证了方案的正确性。然后,文章还设计了主电路谐振软开关、人机接口电路、采样电路、IGBT驱动以及过流过温保护电路。方案确定了之后,通过观察自制电路板的实验波形表明新构建的超声逆变电源可以保证系统在复杂工况下处于谐振状态,验证了全数字频率跟踪系统和功率调节系统的可行性和有效性。 本文的重点和创新点在于将超声逆变电源的控制电路通过数字化来实现。本文创新地利用FPGA构建了全数字频率跟踪系统——数字锁相环和全数字功率调节系统——数字PWM调制、数字PID调节,从而取代了传统的模拟锁相环芯片CD4046和模拟PWM控制芯片SG3525,在控制的精确性、快速性和灵活性上都有了很大的提高。此外,利用ATmega16单片机实现了人机接口电路、频率采样和电流A/D转换,并通过SPI接口与FPGA进行数据传输,完善了数字控制体系,从而实现了基于FPGA和单片机的全数字控制超声逆变电源系统。
上传时间: 2022-05-30
上传用户:
在现代社会,自动控制系统遍及我们生活领域的各个方面,如在工业自动化中的应用:轧钢设备、机床设备、矿井设备、数控设备、工业机器人等等。而这些设备应用的动力系统基本都是直流电机,因此直流电机在当今工业领域得到了广泛的应用。 直流电机是最早发明并得到广泛应用的电机中的一种。在各种类型的电机中,直流电机因良好的启动性能、制动性能和调速性能而在航天、工业、数字化控制等领域得到了广泛应用。PWM(脉宽调制)调速技术是直流电机最常用的一种调速技术,PWM调速技术具有调速精度高、调速响应快、范围广和平滑调速以及节约电能的优点,因而PWM技术是直流电机的主流调速技术之一。 论文主要介绍直流电机调速系统,该系统是基于STC89C52RC微控制器发生PWM信号并输出给驱动模块L298来实现控制直流电机的调速系统。其中主要介绍单片机STC89C52RC的特点和应用以及PWM的工作原理和实现方法。还介绍了通过改变PWM信号占空比来实现直流电机调速以及怎么利用单片机改变占空比(具体见程序中)。其次介绍了4个独立按键,这4个按键与单片机的4个引脚相连接,通过单片机对这4个引脚进行实时扫描,单片机根据按键的状态发出不同的命令产生PWM信号,同时将PWM信号作为输入信号输入给驱动芯片L298,然后以L298的输出作为直流电机的电压输入来控制电机的启动、停止、加速、减速以及正向运转、反向运转。 最后是程序的设计,主要程序包括键盘扫描、PWM信号的产生、单片机定时器0的设置等方面,具体内容见本设计程序。
上传时间: 2022-06-11
上传用户:trh505
本设计针对目前市场上传统充电控制器对蓄电池的充放电控制不合理,同时保护也不够充分,使得蓄电池的寿命缩短这种情况,研究确定了一种基于单片机的太阳能充电控制器的方案。在太阳能对蓄电池的充放电方式、控制器的功能要求和实际应用方面做了一定分析,完成了硬件电路设计和软件编制,实现了对蓄电池的高效率管理。设计一种太阳能LED照明系统充电控制器,既能实现太阳能电池的最大功率点跟踪(MPPT)又能满足蓄电池电压限制条件和浮充特性。构建实验系统,测试表明,控制器可以根据蓄电池状态准确地在MPPT、恒压、浮充算法之间切换,MPPT充电效率较恒压充电提高约16%,该充电控制器既实现了太阳能的有效利用,又延长了蓄电池的使用寿命。在总体方案的指导下,本设计使用STMSS系列8位微控制器是STM8系列的主流微控制器产品,采用意法半导体的130纳米工艺技术和先进的内核架构,主频达到16MHz(105系列),处理能力高达20MTPS。内置EEPROM、阻容(RC)振荡器以及完整的标准外设,性价比高,STMSS指令格式和意法半导体早期的ST7系列基本类似,甚至兼容,内嵌单线仿真接口模块,支持STWM仿真,降低了开发成本;拥有多种外设,而且外设的内部结构、配置方式与意法半导体的同样是Cortex-M3内核的32位嵌入式微处理器STM32系列的MCU基本相同或者相似。另外系列芯片功耗低、功能完善、性价比高,可广泛应用在家用电器、电源控制和管理、电机控制等领域,是8位机为控制器控制系统较为理想的升级替代控制芯片"261,软件部分依据PWM(Pulse Wiath Modulation)脉宽调制控制策略,编制程序使单片机输出PMM控制信号,通过控制光电耦合器通断进而控制MOSFET管开启和关闭,达到控制蓄电池充放电的目的,同时按照功能要求实现了对蓄电池过充、过放保护和短路保护。实验表明,该控制器性能优良,可靠性高,可以时刻监视太阳能电池板和蓄电池状态,实现控制蓄电池最优充放电,达到延长蓄电池的使用寿命。
上传时间: 2022-06-19
上传用户:
随着全控型器件(目前主要是功率MOSPET与IGBT)的广泛使用以及脉宽调制技术的成熟,高频软开关电源也获得了极快地发展。变换电能的电源是以满足人们使用电源的要求为出发点的,根据不同的使用要求和特点对发出电能的电源再进行一次变换。这种变换是把种形态的电能变换为另一种形态的电能,它可以是交流电和直流电之间的变换,也可以是电压或电流幅值的变换,或者是交流电的频率、相位等变换,软开关电源输入和输出都是电能,它属于变换电能的电源。本论文研究了一种新型双管正激软开关DC/DC变换器电路拓扑。主功率器件采用IGBT元件,由功率二极管、电感、电容组成的谐振网络改善IGBT的开关条件,克服了传统开关在开通和闭合过程中会产生功率损耗,并且降低开关灵敏性的弊端。该论文对IGBT的软开关电源进行了总体设计和仿真,最后设计出了一台输出电压为48V、输出功率为1.5kW、工作频率为80kHz、谐振频率为350kHz的开关电源理论模型。
上传时间: 2022-06-21
上传用户:
摘要将异步电机调速的矢量控制方法与电压空间矢量脉宽调制(SVPWM)技术相结合,构建了以SVPWM信号驱动功率器件的异步电机矢量控制调速系统结构图,并用Matlab软件对该系统建模与仿真。仿真结果表明:该系统不仅具有矢量控制调速系统的优越性能,同时具有减少转矩波动,降低输出电流谐波,提高直流电压利用率等优点。本世纪70年代提出的矢量控制通过坐标变换的方法分解定子电流,使之转化为转矩和磁场两个分量,实现解耦控制,从而获得与直流电动机一样良好的动态调速特性,开创了交流电动机等效直流电动机控制的先河"1。随着矢量控制技术的发展,如何优化矢量控制系统的研究已成为热门课题。同时,信号调制技术的发展也使得多种调速系统达到了很好的控制效果,其中SVPWM技术把电动机和逆变器看为一体,通过跟踪圆形旋转磁场来控制逆变器的工作,能达到转矩脉动小、谐波成分少、直流母线电压利用率高的效果,目前已在变频产品中得到了广泛地应用,本文通过软件对基于SVPWM的电机矢量控制系统进行了仿真,得到了良好的控制效果。
上传时间: 2022-06-22
上传用户:
内容简介介绍FreescaleH(CS12系列16位微控制器的中央处理器结构、S12存储器、512指令系统、S12汇编程序设计与实例、Sl2输出/输入端口、中断系统、定时器模块、模/数转换模块、脉宽调制模块、SPl和SCI串行通信模块、Sl2微控制器应用实例和HCS]2在线调试等。并以MC9S12x;128为例,较详尽地列出了大量相关功能寄存器的作用及设置方法,还针对以上功能模块给出了已经调试通过的汇编语言或C语言例程。本书是针对已其有微控制器的基本知识而需要应用HCS]2系列微控制器的读者,通过本书的学习可以更快地掌握Freescale16位微控制器HCS12系列的基本功能,本书可作为汽车电子、自动控制、智能家电、仪器仪表等领域工程技术人员的参考书,也可作为高等院校相关专业高年级本科生、研究生的教材以及教师的教学参考书。
上传时间: 2022-06-23
上传用户:
关键字:12v开关电源+12V、0.5A单片开关稳压电源的电路如图所示。其输出功率为6w.当输入交流电压在 110~260V范围内变化时,电压调整率Svs 1%。当负载电流大幅度变化时,负载调整率Si=5%~7%。为简化电路,这里采用了基本反馈方式。接通电源后,220V交流电首先经过桥式整流和C1滤波,得到约+300V的直流高压,再通过高频变压器的初级线圈 N1,给WS157提供所需的工作电压。从次级线圈 N2上输出的脉宽调制功率信号,经 VD7,C4,L和C5进行高频整流滤波,获得 +12V,0.5A的稳压输出。反馈线圈 N3上的电压则通过 VD6,R2、C3整流滤波后,将控制电流加至控制端 C上。由VD5,R1,和C2构成的吸收回路,能有效抑制漏极上的反向峰值电压。该电路的稳压原理分析如下:当由于某种原因致使Uo4时,反馈线圈电压及控制端电流也随之降低,而芯片内部产生的误差电压 Urt时,PWM比较器输出的脉冲占空比 Dt,经过MOSFET和降压式输出电路使得 Uot,最终能维持输出电压不变。反之亦然。如图所示12v开关电源电路图
标签: 开关电源
上传时间: 2022-06-26
上传用户: