虫虫首页|资源下载|资源专辑|精品软件
登录|注册

缓冲存储器

  • 驱动程序与应用程序的接口

    有两种方式可以让设备和应用程序之间联系:1. 通过为设备创建的一个符号链;2. 通过输出到一个接口WDM驱动程序建议使用输出到一个接口而不推荐使用创建符号链的方法。这个接口保证PDO的安全,也保证安全地创建一个惟一的、独立于语言的访问设备的方法。一个应用程序使用Win32APIs来调用设备。在某个Win32 APIs和设备对象的分发函数之间存在一个映射关系。获得对设备对象访问的第一步就是打开一个设备对象的句柄。 用符号链打开一个设备的句柄为了打开一个设备,应用程序需要使用CreateFile。如果该设备有一个符号链出口,应用程序可以用下面这个例子的形式打开句柄:hDevice = CreateFile("\\\\.\\OMNIPORT3",  GENERIC_READ | GENERIC_WRITE,FILE_SHARE_READ,  NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL ,NULL);文件路径名的前缀“\\.\”告诉系统本调用希望打开一个设备。这个设备必须有一个符号链,以便应用程序能够打开它。有关细节查看有关Kdevice和CreateLink的内容。在上述调用中第一个参数中前缀后的部分就是这个符号链的名字。注意:CreatFile中的第一个参数不是Windows 98/2000中驱动程序(.sys文件)的路径。是到设备对象的符号链。如果使用DriverWizard产生驱动程序,它通常使用类KunitizedName来构成设备的符号链。这意味着符号链名有一个附加的数字,通常是0。例如:如果链接名称的主干是L“TestDevice”那么在CreateFile中的串就该是“\\\\.\\TestDevice0”。如果应用程序需要被覆盖的I/O,第六个参数(Flags)必须或上FILE_FLAG_OVERLAPPED。 使用一个输出接口打开句柄用这种方式打开一个句柄会稍微麻烦一些。DriverWorks库提供两个助手类来使获得对该接口的访问容易一些,这两个类是CDeviceInterface, 和 CdeviceInterfaceClass。CdeviceInterfaceClass类封装了一个设备信息集,该信息集包含了特殊类中的所有设备接口信息。应用程序能有用CdeviceInterfaceClass类的一个实例来获得一个或更多的CdeviceInterface类的实例。CdeviceInterface类是一个单一设备接口的抽象。它的成员函数DevicePath()返回一个路径名的指针,该指针可以在CreateFile中使用来打开设备。下面用一个小例子来显示这些类最基本的使用方法:extern GUID TestGuid;HANDLE OpenByInterface(  GUID* pClassGuid,  DWORD instance,  PDWORD pError){  CDeviceInterfaceClass DevClass(pClassGuid, pError);  if (*pError != ERROR_SUCCESS)    return INVALID_HANDLE_VALUE;  CDeviceInterface DevInterface(&DevClass, instance, pError);  if (*pError != ERROR_SUCCESS)    return INVALID_HANDLE_VALUE;  cout << "The device path is "    << DevInterface.DevicePath()    << endl;   HANDLE hDev;  hDev = CreateFile(   DevInterface.DevicePath(),    GENERIC_READ | GENERIC_WRITE,    FILE_SHARE_READ | FILE_SHARE_WRITE,    NULL,    OPEN_EXISTING,    FILE_ATTRIBUTE_NORMAL,    NULL  );  if (hDev == INVALID_HANDLE_VALUE)    *pError = GetLastError();  return hDev;} 在设备中执行I/O操作一旦应用程序获得一个有效的设备句柄,它就能使用Win32 APIs来产生到设备对象的IRPs。下面的表显示了这种对应关系。Win32 API  DRIVER_FUNCTION_xxxIRP_MJ_xxx  KDevice subclass member function CreateFile  CREATE  Create ReadFile  READ  Read WriteFile  WRITE  Write DeviceIoControl  DEVICE_CONTROL  DeviceControl CloseHandle  CLOSECLEANUP  CloseCleanUp 需要解释一下设备类成员的Close和CleanUp:CreateFile使内核为设备创建一个新的文件对象。这使得多个句柄可以映射同一个文件对象。当这个文件对象的最后一个用户级句柄被撤销后,I/O管理器调用CleanUp。当没有任何用户级和核心级的对文件对象的访问的时候,I/O管理器调用Close。如果被打开的设备不支持指定的功能,则调用相应的Win32将引起错误(无效功能)。以前为Windows95编写的VxD的应用程序代码中可能会在打开设备的时候使用FILE_FLAG_DELETE_ON_CLOSE属性。在Windows NT/2000中,建议不要使用这个属性,因为它将导致没有特权的用户企图打开这个设备,这是不可能成功的。I/O管理器将ReadFile和WriteFile的buff参数转换成IRP域的方法依赖于设备对象的属性。当设备设置DO_DIRECT_IO标志,I/O管理器将buff锁住在存储器中,并且创建了一个存储在IRP中的MDL域。一个设备可以通过调用Kirp::Mdl来存取MDL。当设备设置DO_BUFFERED_IO标志,设备对象分别通过KIrp::BufferedReadDest或 KIrp::BufferedWriteSource为读或写操作获得buff地址。当设备不设置DO_BUFFERED_IO标志也不设置DO_DIRECT_IO,内核设置IRP 的UserBuffer域来对应ReadFile或WriteFile中的buff参数。然而,存储区并没有被锁住而且地址只对调用进程有效。驱动程序可以使用KIrp::UserBuffer来存取IRP域。对于DeviceIoControl调用,buffer参数的转换依赖于特殊的I/O控制代码,它不在设备对象的特性中。宏CTL_CODE(在winioctl.h中定义)用来构造控制代码。这个宏的其中一个参数指明缓冲方法是METHOD_BUFFERED, METHOD_IN_DIRECT, METHOD_OUT_DIRECT, 或METHOD_NEITHER。下面的表显示了这些方法和与之对应的能获得输入缓冲与输出缓冲的KIrp中的成员函数:Method  Input Buffer Parameter  Output Buffer Parameter METHOD_BUFFERED  KIrp::IoctlBuffer KIrp::IoctlBuffer METHOD_IN_DIRECT  KIrp::IoctlBuffer KIrp::Mdl METHOD_OUT_DIRECT  KIrp::IoctlBuffer KIrp::Mdl METHOD_NEITHER  KIrp::IoctlType3InputBuffer KIrp::UserBuffer 如果控制代码指明METHOD_BUFFERED,系统分配一个单一的缓冲来作为输入与输出。驱动程序必须在向输出缓冲放数据之前拷贝输入数据。驱动程序通过调用KIrp::IoctlBuffer获得缓冲地址。在完成时,I/O管理器从系统缓冲拷贝数据到提供给Ring 3级调用者使用的缓冲中。驱动程序必须在结束前存储拷贝到IRP的Information成员中的数据个数。如果控制代码不指明METHOD_IN_DIRECT或METHOD_OUT_DIRECT,则DeviceIoControl的参数呈现不同的含义。参数InputBuffer被拷贝到一个系统缓冲,这个缓冲驱动程序可以通过调用KIrp::IoctlBuffer。参数OutputBuffer被映射到KMemory对象,驱动程序对这个对象的访问通过调用KIrp::Mdl来实现。对于METHOD_OUT_DIRECT,调用者必须有对缓冲的写访问权限。注意,对METHOD_NEITHER,内核只提供虚拟地址;它不会做映射来配置缓冲。虚拟地址只对调用进程有效。这里是一个用METHOD_BUFFERED的例子:首先,使用宏CTL_CODE来定义一个IOCTL代码:#define IOCTL_MYDEV_GET_FIRMWARE_REV \CTL_CODE (FILE_DEVICE_UNKNOWN,0,METHOD_BUFFERED,FILE_ANY_ACCESS)现在使用一个DeviceIoControl调用:BOOLEAN b;CHAR FirmwareRev[60];ULONG FirmwareRevSize;b = DeviceIoControl(hDevice, IOCTL_MYDEV_GET_VERSION_STRING,  NULL, // no input  注意,这里放的是包含有执行操作命令的字符串指针  0, FirmwareRev,      //这里是output串指针,存放从驱动程序中返回的字符串。sizeof(FirmwareRev),& FirmwareRevSize,  NULL // not overlapped I/O );如果输出缓冲足够大,设备拷贝串到里面并将拷贝的资结束设置到FirmwareRevSize中。在驱动程序中,代码看起来如下所示:const char* FIRMWARE_REV = "FW 16.33 v5";NTSTATUS MyDevice::DeviceControl( KIrp I ){  ULONG fwLength=0;  switch ( I.IoctlCode() )  {    case IOCTL_MYDEV_GET_FIRMWARE_REV:      fwLength = strlen(FIRMWARE_REV)+1;      if (I.IoctlOutputBufferSize() >= fwLength)      {        strcpy((PCHAR)I.IoctlBuffer(),FIRMWARE_REV);        I.Information() = fwLength;         return I.Complete(STATUS_SUCCESS);      }      else      {              }    case . . .   } }

    标签: 驱动程序 应用程序 接口

    上传时间: 2013-10-17

    上传用户:gai928943

  • 存储器接口

    6.1  存储器概述1、存储器定义      在微机系统中凡能存储程序和数据的部件统称为存储器。2、存储器分类             微机系统中的存储器分为内存和外存两类。3、内存储器的组成      微机系统中的存储器由半导体存储器芯片组成。     单片机内部有存储器,当单片机内部的存储器不够用时,可以外扩存储器。外扩的存储器就是由半导体存储器芯片组成的。     当用半导体存储器芯片组成内存时必须满足个要求:①每个存储单元一定要有8个位。②存储单元的个数满足系统要求。注意:内存的容量是指它所含存储单元的个数(每个存储单元一定要有8个位,可以存储8位二进制信息)。6.2  半导体存储器由于集成工艺水平的限制,一个半导体存储器芯片上所集成的单元个数和每个单元的位数有限,用它构成内存时必须满足:内存容量和一个存储单元有8个位的要求,因此内存常常由多个半导体存储器芯片构成。      半导体存储器芯片的存储容量是指其上所含的基本存储电路的个数,用单元个数×位数表示。掌握:① 已知内存容量和半导体存储器芯片的容量,求用半导体存储器芯片构成内存时需要的芯片个数。② 内存的容量=末地址—首地址+1     半导体存储器芯片分成ROM和RAM两类。6.2.1    ROM芯片6.2.2    RAM芯片6.3 MCS-51单片机存储器扩展 在微机系统中存储器是必不可少。MCS51系列单片机内部的存储器不够用时需要外扩半导体存储器芯片,外扩的半导体存储器芯片与MCS51系列单片机通过三总线交换信息。二者连接时必须考虑如下问题:1.二者地址线、数据线、控制线的连接。2.工作速度的匹配。CPU在取指令和存储器读或写操作时,是有固定时序的,用户要根据这些来确定对存储器存取速度的要求,或在存储器已经确定的情况下,考虑是否需要Tw周期,以及如何实现。3.片选信号的产生。目前生产的存储器芯片,单片的容量仍然是有限的,通常总是要由许多片才能组成一个存储器,这里就有一个如何产生片选信号的问题。4.CPU的驱动能力 。在设计CPU芯片时,一般考虑其输出线的直流负载能力,为带一个TTL负载。现在的存储器一般都为MOS电路,直流负载很小,主要的负载是电容负载,故在小型系统中,CPU是可以直接与存储器相连的,而较大的系统中,若CPU的负载能力不能满足要求,可以(就要考虑CPU能否带得动,需要时就要加上缓冲器,)由缓冲器的输出再带负载。6.3.1    ROM芯片的扩展6.3.2    RAM芯片的扩展                  

    标签: 存储器接口

    上传时间: 2013-11-21

    上传用户:moerwang

  • 微型计算机总线知识

    计算机部件要具有通用性,适应不同系统与不同用户的需求,设计必须模块化。计算机部件产品(模块)供应出现多元化。模块之间的联接关系要标准化,使模块具有通用性。模块设计必须基于一种大多数厂商认可的模块联接关系,即一种总线标准。总线的标准总线是一类信号线的集合是模块间传输信息的公共通道,通过它,计算机各部件间可进行各种数据和命令的传送。为使不同供应商的产品间能够互换,给用户更多的选择,总线的技术规范要标准化。总线的标准制定要经周密考虑,要有严格的规定。总线标准(技术规范)包括以下几部分:机械结构规范:模块尺寸、总线插头、总线接插件以及按装尺寸均有统一规定。功能规范:总线每条信号线(引脚的名称)、功能以及工作过程要有统一规定。电气规范:总线每条信号线的有效电平、动态转换时间、负载能力等。总线的发展情况S-100总线:产生于1975年,第一个标准化总线,为微计算机技术发展起到了推动作用。IBM-PC个人计算机采用总线结构(Industry Standard Architecture, ISA)并成为工业化的标准。先后出现8位ISA总线、16位ISA总线以及后来兼容厂商推出的EISA(Extended ISA)32位ISA总线。为了适应微处理器性能的提高及I/O模块更高吞吐率的要求,出现了VL-Bus(VESA Local Bus)和PCI(Peripheral Component Interconnect,PCI)总线。适合小型化要求的PCMCIA(Personal Computer Memory Card International Association)总线,用于笔记本计算机的功能扩展。总线的指标计算机主机性能迅速提高,各功能模块性能也要相应提高,这对总线性能提出更高的要求。总线主要技术指标有几方面:总线宽度:一次操作可以传输的数据位数,如S100为8位,ISA为16位,EISA为32位,PCI-2可达64位。总线宽度不会超过微处理器外部数据总线的宽度。总数工作频率:总线信号中有一个CLK时钟,CLK越高每秒钟传输的数据量越大。ISA、EISA为8MHz,PCI为33.3MHz, PCI-2可达达66.6MHz。单个数据传输周期:不同的传输方式,每个数据传输所用CLK周期数不同。ISA要2个,PCI用1个CLK周期。这决定总线最高数据传输率。5. 总线的分类与层次系统总线:是微处理器芯片对外引线信号的延伸或映射,是微处理器与片外存储器及I/0接口传输信息的通路。系统总线信号按功能可分为三类:地址总线(Where):指出数据的来源与去向。地址总线的位数决定了存储空间的大小。系统总线:数据总线(What)提供模块间传输数据的路径,数据总线的位数决定微处理器结构的复杂度及总体性能。控制总线(When):提供系统操作所必需的控制信号,对操作过程进行控制与定时。扩充总线:亦称设备总线,用于系统I/O扩充。与系统总线工作频率不同,经接口电路对系统总统信号缓冲、变换、隔离,进行不同层次的操作(ISA、EISA、MCA)局部总线:扩充总线不能满足高性能设备(图形、视频、网络)接口的要求,在系统总线与扩充总线之间插入一层总线。由于它经桥接器与系统总线直接相连,因此称之为局部总线(PCI)。

    标签: 微型计算机 总线

    上传时间: 2013-11-08

    上传用户:nshark

  • 单片机多机并行通讯的一种方法

    摘 要:单片机多机通讯一般采用串行总线方式,但在通讯距离短,通讯数据量大,通讯速率高的场合也会用到多机并行通讯。本文介绍一种采用简单逻辑电路实现单片机多机并行通讯的方法。关键词:并行通讯,三态缓冲寄存器,双端口存储器,总线隔离1、 简介本文介绍的单片机多机并行通讯系统,使用89C51作为主机,多片89C2051作为从机。(89C2051为20脚300MIL封装,带有2K FLASH E2PROM的单片机,除了少了两个并口外,具备MCS-51系列单片机所有功能。因为其体积小,功能强,必将在单片机应用领域内广泛使用)。这种并行通讯方法适用于在多站点,多层次的检测和控制系统中充当通信控制器的角色;也适合于用作单片机串行口扩充电路。

    标签: 单片机 多机 并行通讯

    上传时间: 2013-10-31

    上传用户:hxy200501

  • 显示器存储器数据大全

    显示器存储器数据大全:AOC772S单芯片06年新款机数据,LG未来窗T710S数据,部分显示器EPROM数据,彩显数据,飞利浦的一些数据,分享唯一显示器EPROM数据WEIYI-775B(A81DC,联想液晶MCU,彩电、显示器总线进入法-大全

    标签: 显示器 存储器 数据大全

    上传时间: 2013-11-05

    上传用户:jrsoft

  • 2003年第5期《简易串行存储器拷贝器》源程序

    2003年第5期《简易串行存储器拷贝器》源程序

    标签: 2003 串行存储器 拷贝器 源程序

    上传时间: 2014-04-16

    上传用户:问题问题

  • MC68HC908GP32 MCU的Flash存储器在线编程

    MC68HC908GP32 MCU的Flash存储器在线编程技术.doc

    标签: Flash 908 MCU MC

    上传时间: 2013-11-24

    上传用户:许小华

  • 利用Xilinx FPGA和存储器接口生成器简化存储器接口

    FPGA 设计人员在满足关键时序余量的同时力争实现更高性能,在这种情况下,存储器接口的设计是一个一向构成艰难而耗时的挑战。Xilinx FPGA 提供 I/O 模块和逻辑资源,从而使接口设计变得更简单、更可

    标签: Xilinx FPGA 存储器接口 生成器

    上传时间: 2013-10-15

    上传用户:ecooo

  • 基于FPGA的DDR2 SDRAM存储器用户接口设计

    使用功能强大的FPGA来实现一种DDR2 SDRAM存储器的用户接口。该用户接口是基于XILINX公司出产的DDR2 SDRAM的存储控制器,由于该公司出产的这种存储控制器具有很高的效率,使用也很广泛,可知本设计具有很大的使用前景。本设计通过采用多路高速率数据读写操作仿真验证,可知其完全可以满足时序要求,由综合结果可知其使用逻辑资源很少,运行速率很高,基本可以满足所有设计需要。

    标签: SDRAM FPGA DDR2 存储器

    上传时间: 2013-11-07

    上传用户:GavinNeko

  • 在Altera 28nm FPGA上解决100-GbE线路卡设计挑战

    支持40 GbE、100 GbE和Interlaken的高密度硬核MLD/PCS模块,从而提高系统集成度。 宽带数据缓冲,提供1,600-Mbps外部存储器接口。 数据包处理和流量管理功能的高效实现。 更高的系统性能,同时保持功耗和成本预算不变。

    标签: Altera FPGA 100 GbE

    上传时间: 2013-11-23

    上传用户:asdgfsdfht