·详细说明:用VISUAL C++编程实现指纹图像的特征提取以及对指纹图像的识别-Utilising VISUAL C++ to make programs, we can get the characters of image and identify the image of finger mark 文件列表: fvs.ncb fvs.sln fvs.v
上传时间: 2013-04-24
上传用户:kaka
·详细说明:本程序包含语音压缩和语音识别领域所需的LPCC,MFCC特征提取算法以及语音端点检测源码。在对语音数据进行特征提取前,可对语音数据进行16K到8K的降采样率处理,包含180阶FIR滤波器的频率压缩程序。文件列表: LPCC&MFCC&VAD .............\endpointD .............\.......
上传时间: 2013-07-06
上传用户:windwolf2000
·详细说明:人脸特征识别运用VC++编程实现,包括图像提取,预处理和特征提取等,最终实现人脸识别的功能。
上传时间: 2013-05-31
上传用户:建建设设
·详细说明: 这是一个完整的指纹识别程序,它包括了直方图均衡,Gabor滤波图像增强,方向图过滤,纹理细化,特征提取及特征匹配。其中,特征匹配包含了3种匹配方法,另外还附有PPT,非常值得研究。
上传时间: 2013-06-27
上传用户:66666
飞机特征点图像的识别是航空试飞领域中计算机视觉研究的重要课题,在基于图像的视频安全监控、自动识别与智能人机交互方面有着重要的研究价值。其检测算法经过长时间的发展,已经取得了显著的成绩。本文中对Paul Viola提出的基于积分图像和AdaBoost的检测方法进行了深入研究、改进,并针对实际问题成功应用到飞机特征点图像的快速检测中。
上传时间: 2013-11-04
上传用户:日光微澜
对脉搏波的完全分析是建立在含有少量噪声且较为清晰的脉搏波信号中,然而在采集脉搏波信号时容易受到多种干扰的影响,使其提取出来的脉搏波含有大量的噪声,因此降噪处理显得尤为必要。同时,脉搏波中含有人体生理病理信息,不同的人将表现为不同的特征,可以看出确定脉搏波特征点对于分析人体生理健康很有意义。针对信号去噪问题采用小波变换和多分辨率分析的方法,该方法在时域和频域都能表征信号局部信息的能力,且具有对信号具有自适应性。运用极值法确定出脉搏波的峰值点,然后再根据峰值点确定出其他特征点的位置,实验证明该方法能够增加特征点的检出率。
上传时间: 2013-10-12
上传用户:shirleyYim
针对齿轮故障特征信号具有强噪声背景、非线性、非平稳性特点,提出采用形态梯度小波对齿轮振动信号进行降噪。首先使用形态梯度小波把齿轮振动信号分解到多个尺度上,然后对各层的细节系数进行软阈值方法降噪处理,对经过处理后的小波系数进行重构。对降噪后的齿轮振动信号采用S变换多分辨率时频分析,能够从具有良好的时频分辨率的S变换谱图提取齿轮故障特征。通过仿真试验和故障轴承的信号分析证明,该方法具有短时傅里叶变换和小波变换的优点,不存在Wigner-Ville分布的交叉干扰和负频率,能有效地提取隐含在噪声中的齿轮故障特征,适合齿轮故障的在线监测和诊断。
上传时间: 2013-11-01
上传用户:AISINI005
提出了一种用各向异性双变量拉普拉斯函数模型去模拟NSCT域的系数的图像去噪算法,这种各向异性双边拉普拉斯模型不仅考虑了NSCT系数相邻尺度间的父子关系,同时满足自然图像不同尺度间NSCT系数方差具有各向异性的特征,基于这种统计模型,文中先推导出了一种各向异性双变量收缩函数的近似形式,然后基于贝叶斯去噪法和局部方差估计将这种新的阈值收缩函数应用于NSCT域,实验结果表明文中提出的方法同小波域 BiShrink算法、小波域ProbShrink算法、小波域NeighShrink算法相比,能够有效地去除图像的高斯噪声,提高了图像的峰值信噪比;并较完整地保持了图像的纹理和边缘等细节信息,从而明显改善了图像的视觉效果。
上传时间: 2013-10-23
上传用户:thuyenvinh
针对红外图像边缘模糊,对比度低的问题,文中研究了改进的中值滤波和改进的Sobel边缘检测对红外图像进行处理。在对处理后图像的特征进行分析的基础上,研究了改进的Laplace金字塔分解的图像融合算法,并基于CUDA并行处理技术,在可编程GPU上实现了红外图像快速增强的目的。该算法结合GPU的内存特点,应用纹理映射、多点访问、并行触发技术,优化数据的存储结构,提高数据处理速度,适用于对红外图像增强的实时性要求较高的领域。实验结果表明,该算法有较好的并行特性,能充分利用CUDA的并行计算能力,提高了红外图像增强的实时性,处理分辨率为3 096×3 096的红外图像时加速比达32.189。
上传时间: 2014-01-03
上传用户:mh_zhaohy
总体平均经验模式分解(EEMD)方法是一种先进的时频分析方法,非常适合于对非平稳故障微弱信号的分析处理。文中介绍了EEMD方法的原理与算法实现步骤,重点分析了EEMD方法避免模式混淆的机理。利用EEMD方法对齿轮箱振动信号进行分析,成功提取了小齿轮磨损故障特征,验证了EEMD方法在故障微弱信号特征提取的有效性。
上传时间: 2014-11-30
上传用户:wbwyl