永磁无刷直流电动机是一种集电机和电子一体化的高新技术产品,它以其体积小、重量轻、惯量小、控制简单和动态性能好等优良特性,被广泛应用于工业、交通、消费电子、航空航天、军事等领域,对永磁无刷直流电动机的研究具有十分重要的意义。 通常的永磁无刷直流电动机由永磁同步电动机、逆变器以及安装在转子轴上的位置传感器构成。逆变器的驱动信号与转子位置信号同步从而保证在任意的速度下定子绕组电流与转子磁场同步。 本文系统研究了永磁无刷直流电动机本体及驱动控制系统,取得了有价值的研究成果。 1)本文查阅了大量的文献资料,全面总结和分析了永磁无刷直流电动机的研究现状,阐述了永磁无刷直流电动机的运行和控制机理。 2)在分析永磁无刷直流电动机的性能与运行原理的基础上,设计了以PIC16F877A单片机为核心的永磁无刷直流电动机调速系统,并进行了实验研究。 3)利用Matlab/Simulink对永磁无刷直流电动机系统建立动态仿真模型,结合实验所得参数进行仿真,结果证明所建仿真模型的正确性和有效性。 4)在Matlab下对永磁无刷直流电动机可能会出现的各种故障进行了仿真研究,表明了永磁无刷直流电动机具有良好的容错性能。 5)基于磁路法设计了一套永磁无刷直流电动机的电磁设计程序,给出了计算实例。 6)给出了计及齿槽影响的永磁无刷直流电动机电感参数的解析计算,与有限元法计算结果对比,表明此方法的正确性和精确性;在星形连接的两两导通方式下,分析计算得到计及绕组电感的永磁无刷直流电动机的平均电流稳态电路模型,结果表明计及电感参数的电枢电流较小,转速相应降低;推导出了在三角形连接的两两导通方式下,计及绕组电感的相电流解析式。
上传时间: 2013-04-24
上传用户:熊少锋
永磁无刷直流电动机具有惯量小、控制简单、动态性能好等优良特性,因此在航天、机器人、数控机床等许多领域得到了广泛应用。无刷直流电机在国外已经成功应用于对系统要求较高的场合,近年来在国内也引起了广泛的兴趣。本课题针对轮式机器人,设计了无刷直流电动机并设计相应控制系统。 首先,本课题分析了机器人用无刷直流电动机的组成结构、绕组连接,并对三相无刷直流电动机星角接工作方式进行比较,按照无刷直流电动机两种模式运行、多极分数槽等特点进行局部设计。最终以爬坡时状态为参考,经过多次计算得到无刷直流电动机的初始设计方案。 其次,为了提高设计的可靠性及设计成本,本课题用MaxwellRMxprt和Maxwell 2D有限元分析软件来对所设计的电磁设计方案进行验证。应用Maxwell 2D软件进一步对设计方案进行分析和校验,以校核仿真结果参数能否与设计方案相吻合。 最后设计了无刷直流电动机的PIC单片机控制系统并对无刷直流电动机进行系统仿真。控制系统CPU采用PIC16F877单片机,它能够提供最佳的性能价格比。系统采用IGBT 专用栅极驱动集成电路IR2130,来控制系统主电路。系统仿真采用MATLAB/SIMULINK软件,检验所设计电机在系统中的性能。 结论,本课题主要包括五部分:无刷直流电动机绕组连接分析,初始数据方案设计,Maxwell对电磁设计方案进行验证,设计PIC单片机控制系统,应用MATLAB对电机控制系统进行仿真。通过这五部,本文完成了轮式机器人用无刷直流电动机进行设计及相应控制系统的设计。
上传时间: 2013-07-28
上传用户:long14578
随着现代化工业生产的不断发展,更高的调速精度、更大的调速范围和更快的响应速度成为永磁同步电机调速系统的迫切要求,数字化控制系统正代表着这一发展方向。高性能数字信号处理器(控制器)的出现、电机控制理论以及电力电子器件的发展都为数字化控制的实现创造了条件。本文采用Microchip公司专用于电机控制的dsPIC30F3011型数字信号控制器(DSC)为核心,开发了用于电梯门机控制的数字化永磁同步电机矢量控制系统,并在硬件实验平台上获得了验证。 本文首先在永磁同步电机数学模型的分析基础上,深入的研究了永磁同步电机的矢量控制的原理和常用控制策略。接着,经过比较各种矢量控制策略的优缺点,确定了i<,d>=0的控制策略和空间矢量脉宽调制(SVPWM)的电压调制方法。文中对空间矢量脉宽调制(SVPWM)的原理及实现方法进行了详细的阐述,并在此基础上提出利用查表实现SVPWM控制的算法。然后,论文详细论述了控制电路各部分及外围辅助电路的设计和调试。软件开发均在Microchip的MPLAB IDE集成开发环境下完成,软件采用C语言编写,实现了带位置传感器的速度闭环和位置闭环矢量控制,并给出了系统主程序及定时中断服务程序的流程图。永磁同步电机矢量控制的主要控制策略如转子初始位置检测、速度采样计算及PI调节、SVPWM查表实现方法等都在定时中断服务程序中完成。最后在硬件平台上,对软件进行系统调试,试验表明本矢量控制系统能够有效满足电梯门机的控制需求,从而证明了系统设计的可行性。 在论文的最后,对全文的工作做了总结,并提出了系统需要进一步完善的地方。
上传时间: 2013-06-27
上传用户:HGH77P99
电动车是指以车载电源为动力,用电机驱动车轮行驶,符合道路交通、安全法规各项要求的车辆,电动车无内燃机汽车工作时产生的废气,不产生排气污染,对环境保护和空气的洁净是十分有益的,几乎是“零污染”。电动汽车的研究表明,其能源效率已超过汽油机汽车。特别是在景区运行,汽车走走停停,行驶速度不高,电动汽车更加适宜。电机驱动及控制系统是电动汽车的核心,本文主要设计的是电动游览车用异步电动机的驱动控制系统。 本文设计了以IGBT作为开关元器件的主电路结构,通过多次改进结构,并设计采用了具有硬件互锁功能的驱动电路,进一步提高了主电路的可靠性。以TI公司生产的TMS320LF2407A芯片为系统控制核心,设计了控制电路以及保护电路;编写了以矢量控制作为核心算法、空间电压矢量控制作为PWM控制方式的控制程序。通过研究单神经元矢量控制的原理,进行了仿真,验证了单神经元矢量控制具有更好的快速性、鲁棒性和自适应性。 通过大量的实验和实际现场装车调试证明,本文设计的异步电动机控制系统可靠性高,动态性能良好,控制简单,适合在蓄电池供电的逆变器应用场合(电动车)。
上传时间: 2013-04-24
上传用户:1109003457
空调压缩机是空调器的核心部件。传统定速空调器中压缩机多采用单相异步电动机,对电机采用简单的开关式控制,电能损耗、室温波动及噪音都很大,压缩机容易受冲击损坏。随着人们生活水平的提高及能源短缺问题的出现,将变频调速技术应用于空调器中,将变频压缩机取代传统定频定速压缩机,对其进行变频调速将使压缩机减少开停次数,降低室温波动,提高舒适度,获得了更好的空气调节效果和实现节能降耗的要求。 空调系统是一个典型的多输入多输出、具有大滞后特性的菲线性系统。要对空调压缩机进行变频调速,需要根据房间温度的变化得出压缩机的频率值。由于空调系统精确的数学模型难以取得,且时间常数较大,传统的PID调整不仅费时费力,性能指标也不能令人满意。因此,将模糊控制技术引入空调压缩机的变频调速控制,建立模糊控制器,以房间温度的变化和变化率为输入,压缩机的频率为输出。对于提高空调系统的控制精度、稳定性和可靠性,无论从学术研究角度出发,还是在工程应用方面,都具有相当的现实意义。 本文分别从三相异步电动机的变频调速技术、变频空调控制策略等方面进行了探讨分析。首先将模糊控制技术应用到空调压缩机变频调速中,根据建立模糊控制规则的基本思想及实际运行经验,通过模糊控制技术使空调压缩机具有自调整的智能特性,从而得出最佳的动态控制参数,克服了PID控制器控制精度较低、消除稳态误差能力差的缺点。 然后详细阐述了SVPWM的基本原理,对空间矢量调制(SVPWM)方式及其实现方法进行了探讨。在变频压缩机的控制中采用先进的SVPWM调制技术,压缩机能根据室内需要的冷(热)量不同,连续地、动态地、实时地调整其制冷(热)量,始终保持在较合理的运转状态下。能够进一步提高电压的利用率和频率分辨率,并使压缩机运行更加平稳,提高空调的效率,达到节能降耗的效果。
上传时间: 2013-04-24
上传用户:as275944189
应用于电动汽车驱动领域的永磁同步电机交流驱动系统是由永磁同步电机、电力电子技术和控制技术相结合而形成的新型交流驱动系统。因其具有良好的运行性能而成为当代电气传动领域研究的热点之一。 永磁同步电机是一个多变量、非线性、高强耦合的系统,其输出转矩与定子电流不成正比,而是复杂的函数关系,因此要得到好的控制性能,需要进行磁场解耦。矢量变换控制技术正好适用于永磁同步电机的这种特点。 本文在数字电机控制专用DSP芯片TMS320LF2407的基础上,以永磁同步电机为研究对象,对其矢量控制技术进行了研究和设计。 首先课题根据永磁同步电机实际物理模型,分析推导得到了永磁同步电机的三相静止坐标系下及两相旋转坐标系下的数学模型。 接着课题对永磁同步电机运行特性进行了分析和研究。在此基础上,课题提出了一种新型的永磁同步电机矢量控制系统,在这个系统上,课题提出了应用不同矢量控制策略的矢量控制方法,并对其做了仿真验证。 结果表明,课题设计的系统以及应用不同矢量控制策略的矢量控制方法准确可行。 这个控制系统便于实现多种矢量控制方法,为永磁同步电机扩速增效提供了理论平台。 在理论分析、仿真通过基础上,课题对驱动系统的硬件和软件两个方面进行了具体的设计。 课题完成了DSP控制系统关键硬件电路的设计,并设计制作了一块应用SCALE模块的IGBT驱动电路,此驱动电路响应迅速、抗干扰性强,驱动性能优越。此外,课题完成了永磁同步电机矢量控制系统全数字化设计,调试通过了速度位置检测、电流检测、PI调节、坐标变换等应用模块。 课题最后对整个系统的做了全面的总结,并对今后的工作方向进行了展望。
上传时间: 2013-06-22
上传用户:firstbyte
矢量控制变频调速系统是国内当前电气传动和自动化领域研究的热点和技术攻坚的难点。矢量控制技术作为一种先进的控制策略,是在电机统一理论、机电能量转换和坐标变换理论的基础上发展起来的,具有先进性、新颖性和实用性的特点。其思想就是将异步电动机的数学模型通过坐标变换,将定子电流矢量分解为按转子磁场定向的两个直流分量并分别加以控制,从而实现磁通和转矩的解耦控制,以期达到独立控制电机转矩的效果。 本课题基于矢量控制的基本原理,采用TI公司最先进的电机控制专用DSP芯片TMS320F2812,开发出了一套基于转子磁链位置估计和转子速度估计的电流转速双闭环的转子磁场定向直接矢量控制变频调速系统,并实现了实际运行,初步达到了产品化的目标。主要的工作如下: (1)从电机数学模型和坐标系变换入手,采用电流转速双闭环的转子磁场定向直接矢量控制方案,深入探讨了SVPWM和矢量控制的基本原理,并完成了调速系统的功能框图; (2)基于TI公司的DSP芯片TMS320F2812和MITSUBISHI的IPM模块PM50RSA120,设计了调速系统的硬件电路,包括控制电路,驱动电路,电源电路和操作面板电路等; (3)设计了基于转子磁链位置估计和速度估计的电流转速双闭环的转子磁场定向直接矢量控制变频调速系统的软件部分,给出了调速系统的软件流程图和各子模块的具体实现; (4)采用先进的自适应Fuzzy-PI调节器来代替传统的PI调节器作为速度控制器,取得了较好的控制效果; (5)搭建了整个变频调速实验平台,进行了整机测试,给出了实验结果和结论。 该系统已经成功应用于矢量变频器成品生产中,在北京天华博实电气有限公司的变频器生产车间进行了相应的实验。实验表明,该系统具有良好的动静态性能,运行稳定,抗干扰能力强,获得用户好评,不失为一套具有先进性、新颖型、实用性的高性能变频调速系统。
上传时间: 2013-05-25
上传用户:er1219
永磁同步电机(PMSM)因其无需励磁电流、运行效率和功率密度高,在交流调速系统中被广泛的应用,但PMSM高性能的矢量控制需要精确的转子位置和速度信号来实现磁场定向。在传统控制中,一般采用机械式传感器来检测转子位置和转速,但是机械式传感器存在诸如成本高、可靠性低、不易维护等问题,使得无速度/位置传感器控制技术成为永磁同步电机控制中的热点问题。虽然目前已有较多的研究成果,但是所采用的方法大多是基于电机基波方程的分析,一般不适用于低速甚至零速,并且对电机参数较为敏感,鲁棒性差。本文正是为了解决这个问题,而采用高频信号注入法实现转子位置估算,这种方法适合于低速甚至零速,对电机参数的变化不敏感,鲁棒性强。主要做了如下的工作: 首先详细介绍了永磁同步电机三种基本结构,在建立了旋转坐标系下永磁同步电机数学模型的基础上叙述了其矢量控制原理,分析了各种现有的永磁同步电机无速度/位置传感器控制策略;其次在永磁同步电机矢量控制的基础上详细讨论了旋转高频电压信号注入法与脉振高频电压信号注入法提取转子位置的基本原理,并在此基础上利用MATLAB/SIMULINK仿真工具建立了整个永磁同步电机无速度/位置传感器矢量控制系统的模型,进行了仿真研究,仿真结果验证了控制算法的正确性。最后利用TI公司推出的数字信号处理器DSP芯片TMS320F2812,实现了基于脉振高频信号注入法的永磁同步电机无速度/位置传感器的实验运行,实验结果验证了这种方法适合于低速运行,对电机参数的变化不敏感,鲁棒性强。
上传时间: 2013-06-06
上传用户:Neal917
各种先进PID控制的MATLAB仿真,适合PID初学者熟悉各种PID的控制原理
上传时间: 2013-07-26
上传用户:wl9454
随着国民经济的飞速发展,传统的电机已无法满足当前工程的要求,其作用也由过去简单的起停控制、提供动力上升到要求对其速度、位置、转矩等进行精确的控制,并能实现快速加速、减速、反转以及准确停止等,使被驱动的机械运动符合于集的要求。在集成电路、现代电子技术及控制理论飞速发展的今天,电机控制技术也得到了飞快的发展,电机控制器也由模拟分立元件构成的电路向数模混合、全数字方向发展。本论文主要研究了FPGA芯片在电机控制器中的应用。 论文首先对无刷直流电机系统进行了综合性论述。对系统的组成、及系统中主要部分:如位置传感器、逆变器和功率器件、供电直流电源进行了较详细的说明;并且提出了与本研究相关的控制机理和实施方案。 其次,论文对FPGA芯片的特点及配置电路、以及以FPGA-FLEX10K10为核心的控制器电路的组成进行了较详细的论述;同时对超高速集成电路硬件描述语言(VHDL)的特点和应用进行了研究;并提出了应用FPGA芯片对电机速度进行控制的系统构成及工作原理。 论文还对FPGA芯片与DSP芯片共同完成电机控制的方案进行了论述,利用ALTERA公司的FPGA芯片完成了电机控制器的设计、制造和调试,并在此基础上分析研究了利用此控制器对无刷直流电机进行调速控制的方法;两种控制器共同工作,组合方便、功能强大,适合在高精度、高效、宽变速控制的应用场合下,可对电机实现精度更高、策略更复杂的控制。 论文最后还对在具体产品中的应用效果及行了简单分析。
上传时间: 2013-08-04
上传用户:小鹏