DFT(Discrete Fourier Transformation)是数字信号分析与处理如图形、语音及图像等领域的重要变换工具,直接计算DFT的计算量与变换区间长度N的平方成正比。当N较大时,因计算量太大,直接用DFT算法进行谱分析和信号的实时处理是不切实际的。快速傅立叶变换(Fast Fourier Transformation,简称FFT)使DFT运算效率提高1~2个数量级。其原因是当N较大时,对DFT进行了基4和基2分解运算。FFT算法除了必需的数据存储器ram和旋转因子rom外,仍需较复杂的运算和控制电路单元,即使现在,实现长点数的FFT仍然是很困难。本文提出的FFT实现算法是基于FPGA之上的,算法完成对一个序列的FFT计算,完全由脉冲触发,外部只输入一脉冲头和输入数据,便可以得到该脉冲头作为起始标志的N点FFT输出结果。由于使用了双ram,该算法是流型(Pipelined)的,可以连续计算N点复数输入FFT,即输入可以是分段N点连续复数数据流。采用DIF(Decimation In Frequency)-FFT和DIT(Decimation In Time)-FFT对于算法本身来说是无关紧要的,因为两种情况下只是存储器的读写地址有所变动而已,不影响算法的结构和流程,也不会对算法复杂度有何影响。
标签: Transformation Discrete Fourier DFT
上传时间: 2016-04-12
上传用户:lx9076
超声多普勒流量计在流量测量、企业管理及流量监测与控制中具有广阔的应用前景, 但目前大部分流量计仍使用过 零检测法,精度不高。本文从理论上介绍了采用频谱分析法消除了理论上的误差, 提高了测量精度。同时介绍了硬件电路电 路、软件处理及试验结果。
上传时间: 2014-12-07
上传用户:Pzj
Matlab动态仿真在混沌控制与同步中的应用研究 摘 要:针对在分析非线性系统混沌行为时较为复杂这一问题,采用一般的数值计算方法,提出了利用Mat2 lab对混沌系统进行建模和动态仿真的方法.以蔡电路和洛伦兹系统为例,分析了其动态仿真在混沌控制与 同步中的应用
上传时间: 2016-06-24
上传用户:sevenbestfei
:高速混合PCB 的电磁兼容性设计首要解决合理安排布局布线和接地问题。分析基频和高频谐波、信号上 升或下降速率,电路的等效分布参数,传导耦合、辐射耦合和不匹配线的辐射、串音干扰等。根据板层、电源平面、 时钟电路和高频电路的布线原则进行布局布线。接地选择单点或多点接地。
上传时间: 2014-01-20
上传用户:13160677563
按键在数字电路设计中经常用到。按键的弹跳现象是数字系统设计中存在的客观问题。按键是机械触点,当接触点断开或闭合时会产生抖动。为使每一次按键只做一次响应,就必须去除抖动。本文对按键的抖动信号进行了分析,并通过计数器的方式完成了消除抖动电路模块的设计
上传时间: 2016-09-22
上传用户:xc216
EWB的实习报告 1 熟悉Multisim9的基本操作。 2 学会利用Multisim9进行电路的设计与仿真,掌握一定的电路测试方法。 3 通过实习,能在Multisim9虚拟平台中设计简单的模拟电路及数字电路,并利用虚拟仪器及软件提供的分析方法,对电路进行仿真
上传时间: 2016-12-24
上传用户:685
项目的研究内容是对硅微谐振式加速度计的数据采集电路开展研究工作。硅微谐振式加速度计敏感结构输出的是两路差分的频率信号,因此硅微谐振式加速度计数据采集电路完成的主要任务是测出两路频率信号的差值。测量要求是:实现10ms内对中心谐振频率为20kHz、标度因数为100Hz/g、量程为±50g、分辨率为1mg的硅微谐振式加速度计输出的频率信号的测量,等效测量误差为±1mg。电路的控制核心为单片机,具有串行接口以便将测量结果传送给PC机从而分析、保存测量结果。 按研究内容设计了软硬件。软件采用多周期同步法实现高精度,快速度的频率测量方案,并使用CPLD编程实现,这也是最难的地方。硬件采用现在流行的3.3V供电系统,选用EPM240T100C5N和较为实用的AVR单片机芯片Atmega64L,对应3.3V供电系统,串行接口使用MAX3232。 最后完成了PCB板的制作,经反复调试后得到了非常好的效果。采集的数据满足项目研究内容中的要求,当提高有源晶振的频率时,精度有大大提高了,此时已远远满足了项目中高精度,快速度测量的要求。另外,采用MFC编程编写了上位机的数据接收和数据处理专用软件,集数据采集,运算,作图,保存功能于一体。 此为CPLD语言部分
上传时间: 2013-12-09
上传用户:奇奇奔奔
项目的研究内容是对硅微谐振式加速度计的数据采集电路开展研究工作。硅微谐振式加速度计敏感结构输出的是两路差分的频率信号,因此硅微谐振式加速度计数据采集电路完成的主要任务是测出两路频率信号的差值。测量要求是:实现10ms内对中心谐振频率为20kHz、标度因数为100Hz/g、量程为±50g、分辨率为1mg的硅微谐振式加速度计输出的频率信号的测量,等效测量误差为±1mg。电路的控制核心为单片机,具有串行接口以便将测量结果传送给PC机从而分析、保存测量结果。 按研究内容设计了软硬件。软件采用多周期同步法实现高精度,快速度的频率测量方案,并使用CPLD编程实现,这也是最难的地方。硬件采用现在流行的3.3V供电系统,选用EPM240T100C5N和较为实用的AVR单片机芯片Atmega64L,对应3.3V供电系统,串行接口使用MAX3232。 最后完成了PCB板的制作,经反复调试后得到了非常好的效果。采集的数据满足项目研究内容中的要求,当提高有源晶振的频率时,精度有大大提高了,此时已远远满足了项目中高精度,快速度测量的要求。另外,采用MFC编程编写了上位机的数据接收和数据处理专用软件,集数据采集,运算,作图,保存功能于一体。 此为上位机程序部分
上传时间: 2017-02-13
上传用户:大三三
集成运算放大器分析与应用,详细介绍了运放在各种电路中的应用:运算、滤波、非线性、线性、精密整流等。
上传时间: 2017-03-03
上传用户:watch100
针对小车在行驶过程中的寻迹要求,设计了以AT89C51单片机为核心的控制电路,采用模块化的设计方案,运用色标传感器、金属探测传感器、超声波传感器、霍尔传感器组成不同的检测电路,实现小车在行驶中轨迹、探测预埋金属铁片、躲避障碍物、测量车速等问题检测,并对设计的电路进行了理论分析和实际测试。结果表明,该智能小车具有很好的识别与检测的能力,具有定位精度、运行稳定可靠的特点。
上传时间: 2013-12-09
上传用户:ZJX5201314