虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

电荷密度

  • Cadence Allegro 17.2 软件安装包

    Cadence Allegro是一款专业的PCB设计软件,是世界上最大的电子设计技术和配套服务的 EDA 供货商之一,在EDA工具中属于高端的PCB设计软件,它的知名度在全球电子设计行业领域内如雷贯耳,是电子行业创新的领导者。allegro主要用于PCB设计布线,为当前高速、高密度、多层的复杂 PCB 设计布线提供了最完美解决方案。allegro 功能包括原理图输入、生成、模拟数字/混合电路仿真,fpga设计,pcb编辑和自动布局布线mcm电路设计、高速pcb版图的设计仿真等等。包括:* Concept HDL原理图设计输入工具,有for NT和for Unix的产品。* Check Plus HDL原理图设计规则检查工具。(NT & Unix)* SPECTRA Quest Engineer PCB版图布局规划工具(NT & Unix)* Allegro Expert专家级PCB版图编辑工具 (NT & Unix)* SPECTRA Expert AutoRouter 专家级pcb自动布线工具* SigNoise信噪分析工具* EMControl电磁兼容性检查工具* Synplify FPGA / CPLD综合工具* HDL Analyst HDL分析器* Advanced Package Designer先进的MCM封装设计工具allegro 特点1.系统软件互联服务平台可以跨集成电路、封装和PCB协同设计性能卓越互联。2.应用平台的协同设计方式,技术工程师能够 快速提升I/O油压缓冲器中间和跨集成电路、封装和PCB的系统软件互连。3.该方式能防止硬件返修并减少硬件成本费和减少设计周期时间。4.管束驱动器的Allegro步骤包含高級作用用以设计捕获、信号完整性和物理学完成。5.因为它还获得CadenceEncounter与Virtuoso服务平台的适用。6.Allegro协同设计方式促使高效率的设计链协作变成实际。

    标签: Allegro

    上传时间: 2022-06-20

    上传用户:canderile

  • Cadence Allegro 17.4 软件安装包

    Cadence Allegro是一款专业的PCB设计软件,是世界上最大的电子设计技术和配套服务的 EDA 供货商之一,在EDA工具中属于高端的PCB设计软件,它的知名度在全球电子设计行业领域内如雷贯耳,是电子行业创新的领导者。allegro主要用于PCB设计布线,为当前高速、高密度、多层的复杂 PCB 设计布线提供了最完美解决方案。allegro 功能包括原理图输入、生成、模拟数字/混合电路仿真,fpga设计,pcb编辑和自动布局布线mcm电路设计、高速pcb版图的设计仿真等等。包括:* Concept HDL原理图设计输入工具,有for NT和for Unix的产品。* Check Plus HDL原理图设计规则检查工具。(NT & Unix)* SPECTRA Quest Engineer PCB版图布局规划工具(NT & Unix)* Allegro Expert专家级PCB版图编辑工具 (NT & Unix)* SPECTRA Expert AutoRouter 专家级pcb自动布线工具* SigNoise信噪分析工具* EMControl电磁兼容性检查工具* Synplify FPGA / CPLD综合工具* HDL Analyst HDL分析器* Advanced Package Designer先进的MCM封装设计工具allegro 特点1.系统软件互联服务平台可以跨集成电路、封装和PCB协同设计性能卓越互联。2.应用平台的协同设计方式,技术工程师能够 快速提升I/O油压缓冲器中间和跨集成电路、封装和PCB的系统软件互连。3.该方式能防止硬件返修并减少硬件成本费和减少设计周期时间。4.管束驱动器的Allegro步骤包含高級作用用以设计捕获、信号完整性和物理学完成。5.因为它还获得CadenceEncounter与Virtuoso服务平台的适用。6.Allegro协同设计方式促使高效率的设计链协作变成实际。

    标签: Allegro

    上传时间: 2022-06-20

    上传用户:canderile

  • 微波直接射频调制技术研究

    直接调制将基带信号直接转换为射频信号,不需要二次频率变换,与上变频方式相比系统结构简单,降低了对滤波器的要求,具有体积小,重量轻,成本低等明显的优点.1/Q正交调制的关键指标是误差矢量(EVM:Error Vector Magnitude).本文研究的是微波波段的直接调制技术。利用基带对L波段和s波段几个不同的载波进行直接调制。首先,在阐述1/Q正交调制基本原理的基础上,通过对误差矢量和邻近信道功率泄漏的详细分析,定性、定量地讨论了各种非理想电路因素(如相位不平衡、幅度不平衡、直流偏差等)对调制器性能的影响;其次,介绍了锁相环的工作原理和基本组成部分,包括锁相环的设计和环路滤波器的设计,特别详述了电荷泵锁相频率源;第三,介绍了采用直接调制技术模拟卫星信号的射频前端的设计;最后,对整个直接射频调制系统进行测试,结果基本上达到了课题要求。关键词:微波锁相环,相位噪声,直接调制

    标签: 射频调制

    上传时间: 2022-06-20

    上传用户:

  • R4850G2 整流模块用户手册

    R4850G2是一款高效率、高功率密度的数字 化整流模块,实现85V AC~300V AC输入, 53.5V DC默认输出的转换。具有软启动功能、 完善的保护功能、低噪音、可并联使用等优点。 采用最新电源监控技术,实现整流模块状态及负 载的实时监控,实现输出电压通过后台调节功能

    标签: r4850g2 整流模块

    上传时间: 2022-06-21

    上传用户:slq1234567890

  • IGBT驱动器驱动能力计算

    引言我们在选择和设计IGBT驱动器时经常会碰到一些问题和不确定因素。部分原因是厂家对IGBT描述的不够充分;另一方面是由于IGBT手册中所给的输入结电容Ciss值与在应用中的实际的输入结电容值相差甚远。依据手册中的Ciss值作设计,令许多开发人员走入歧途。下面给出了不同功率等级的驱动电路选择和设计的正确计算的步骤。1 确定IGBT门极电荷以及门极电容对于设计一个驱动器来讲,最重要的参数是门极电荷,在很多情况下,IGBT数据手册中这个参数没有给出,另外,门极电压在上升过程中的充电过程也未被描述。无论如何,门极的充电过程相对而言能够简单地通过测量得到。因而要驱动一个IGBT,我们最好使用一个专用的驱动器。除此之外,在设计中至少我们知道在应用中所需的门极电压(例如±15V)首先,在负载端没有输出电压的情况下,我们可以作如下计算。门极电荷可以利用公式计算

    标签: igbt 驱动器 驱动

    上传时间: 2022-06-21

    上传用户:

  • 车用永磁同步电机控制及igbt驱动技术研究

    在当今能源短缺的情况下,电动车的发展变的尤为重要。车用电机控制器是电动汽车的最关键的部分之一,受到了国内外学者的高度重视,近些年来发展也非常迅速。永磁同步电动机因有高效率、高功率密度、调速性能好等优点,被用作电动汽车驱动电机,对其控制方法的研究很有意义.IGBT是永磁同步电机控制器的核心部件,然而IGBT驱动效果的好坏对电机驱动的安全性和可靠性有非常大影响,所以对IGBT驱动技术的研究很意义。本文首先对永磁同步电机建立了数学模型,并介绍了矢量控制方法和空间矢景脉宽调制(SVPWM)技术,并在MATLAB/Simulink环境下对SVPWM进行仿真。本论文以TMS320F2812为主控芯片,在该控制器中还包括了电源电路、信号检测电路和保护电路等,在论文中对每一硬件部分做了详细的介绍,分析了每个电路的功能和作用。同时介绍了软件流程,重点介绍了中断部分的软件流程,并对位置信号处理和校正做了详细说明,在硬件电路中着重分析了驱动电路部分。对IGBT的选型做了详细的介绍,并对驱动电路的要求做了进一步的说明。在本论文中驱动芯片选用的是HCPL-316J,it IGBT开通和关断所需的+15V和-5V电压,由所设计的开关电源电路提供。同时对IGBT的通态损耗和开关损耗做了分析,并对引起损耗的参数做了分析说明。最后为了验证控制器的特性,在实验台架上做了大量的实验,验证了控制器的整体方案的设计。通过实验证明该控制器能够在电动车中可靠运行。

    标签: 永磁同步电机控制 igbt驱动

    上传时间: 2022-06-21

    上传用户:zhaiyawei

  • 电子元器件系列知识—IGBT

    一、IGBT 驱动1 驱动电压的选择IGBT 模块GE 间驱动电压可由不同地驱动电路产生。典型的驱动电路如图1 所示。图1 IGBT 驱动电路示意图Q1,Q2 为驱动功率推挽放大,通过光耦隔离后的信号需通过Q1,Q2 推挽放大。选择Q1,Q2 其耐压需大于50V 。选择驱动电路时,需考虑几个因素。由于IGBT 输入电容较MOSFET 大,因此IGBT 关断时,最好加一个负偏电压,且负偏电压比MOSFET 大, IGBT 负偏电压最好在-5V~-10V 之内;开通时,驱动电压最佳值为15V 10% ,15V 的驱动电压足够使IGBT 处于充分饱和,这时通态压降也比较低,同时又能有效地限制短路电流值和因此产生的应力。若驱动电压低于12V ,则IGBT 通态损耗较大, IGBT 处于欠压驱动状态;若 VGE >20V ,则难以实现电流的过流、短路保护,影响 IGBT 可靠工作。2 栅极驱动功率的计算由于IGBT 是电压驱动型器件,需要的驱动功率值比较小,一般情况下可以不考虑驱动功率问题。但对于大功率IGBT ,或要求并联运行的IGBT 则需要考虑驱动功率。IGBT 栅极驱动功率受到驱动电压即开通VGE( ON )和关断 VGE( off ) 电压,栅极总电荷 QG 和开关 f 的影响。栅极驱动电源的平均功率 PAV 计算公式为:PAV =(VGE(ON ) +VGE( off ) )* QG *f对一般情况 VGE( ON ) =15V,VGE( off ) =10V,则 PAV 简化为: PAV =25* QG *f。f 为 IGBT 开关频率。栅极峰值电流 I GP 为:

    标签: 电子元器件 igbt

    上传时间: 2022-06-21

    上传用户:

  • 微型CCD光谱仪器的光学结构设计

    1前言光谱仪是测量光源和物质光谱特性的重要装置,它在颜色显示,视觉效果比对和生物化学领域有着广泛的应用。近年来,电荷耦合器件CCD取得了飞速的发展,工艺日趋完善,已能批量制造完全没有缺陷的高可靠性低成六的CCD芯片,这种器件有很宽的光谱响应特性,完全可以代替感光乳剂,应用在光谱测量上",因此,设计出配合CCD光谱仪器使用的光学结构对于仪器的小型化有着重大的意义.2微型CCD光谱仪的光学结构设计2.1光栅的选择与设计在光谱仪核心元件分光器件的发展历程中,经历了色散校镜到衍射光栅到采用干涉调制元件和信息变换技术的演化。近年来声光调造器件AOTF的技术和应用也有了很大发展,没有机械活动件,全固态、电子调诸.结构小而牢周,可承受震动冲击等一系列优点,使其具有明显的技术和应用竞争力2.3。本设计中选择闪耀光栅。因为光棚与其他分光元件相比较,有许多优点。首先,光栅的角色散率几乎和波长无关,这对光谱的波长测量很有利。其二,光棚的分辨率比棱镜大,价格也较低,其三,光栅不受材料透过率的限制,它可以在整个光学光谱区中应用。

    标签: ccd 光谱仪器 光学结构

    上传时间: 2022-06-22

    上传用户:

  • 线阵CCD图像传感器驱动电路的设计.

    摘要:随着CCD性能的不断提高,CCD技术在军、民用领域都得到了广泛的应用。介绍了TCDI501C线阵CCD的驱动电路设计,详细介绍了用VHDL完成的CCD图像传感器驱动时序设计和视频输出差分信号驱动电路的设计。关键词:线阵CCD;图像传感器:仪器仪表放大器;差分驱动1引言电荷耦合器件(CCD,Charge Couple Device)是20世纪60年代末期出现的新型半导体器件。目前随着CCD器件性能不断提高,在图像传感、尺寸测量及定位测控等领域的应用日益广泛,CCD应用的前端驱动电路成本价格昂贵,而且性能指标受到生产厂家技术和工艺水平的制约,给用户带来很大的不便。CCD驱动器有两种:一种是在脉冲作用下CCD器件输出模拟信号,经后端增益调整电路进行电压或功率放大再送给用户;另一种是在此基础上还包含将其模拟量按一定的输出格式进行数字化的部分,然后将数字信息传输给用户,通常的线阵CCD摄像机就指后者,外加机械扫描装置即可成像。所以根据不同应用领域和技术指标要求,选择不同型号的线阵CCD器件,设计方便灵活的驱动电路与之匹配是CCD应用中的关键技术之一。

    标签: ccd 图像传感器 驱动电路

    上传时间: 2022-06-23

    上传用户:

  • CCD常用知识总结

    CCD常用知识总结随着CCD的不断发展,尤其典型的是当微光CCD向低照度方向发展时,噪声已经成为阻碍CCD进一步发展的障碍。噪声是CCD的一个重要参数,它是决定信噪比S/N(Singal/Noise)的重要因素,而同时信噪比又是各种数据参数中最重要的指标之一。随着CCD器件向小型化、集成化的不断发展,CCD光敏元数的增加势必减小光敏元的面积,从而降低了CCD的输出饱和信号。为扩大CCD的动态范围,就必须降低CCD的噪声(动态范围与噪声间的联系)。CCD工作时,在输入结构、输出结构、信号电荷存储和转移过程中都会产生噪声。噪声叠加在信号电荷上,形成对信号的干扰,降低了信号电荷包所代表的信息复原后的精度,并且限制了信号电荷包的最小值。CCD图像传感器的输出信号是空间采样的离散模拟信号,其中夹杂着各种噪声和干扰。CCD输出信号处理的目的是在不损失图像细节并保证在CCD动态范围内,图像信号随目标亮度线形变化是尽可能消除这些噪声和干扰。(选自《CCD降噪技术的研究》燕山大学工学硕士学位论文)

    标签: ccd

    上传时间: 2022-06-23

    上传用户:qingfengchizhu