关键字:12v开关电源+12V、0.5A单片开关稳压电源的电路如图所示。其输出功率为6w.当输入交流电压在 110~260V范围内变化时,电压调整率Svs 1%。当负载电流大幅度变化时,负载调整率Si=5%~7%。为简化电路,这里采用了基本反馈方式。接通电源后,220V交流电首先经过桥式整流和C1滤波,得到约+300V的直流高压,再通过高频变压器的初级线圈 N1,给WS157提供所需的工作电压。从次级线圈 N2上输出的脉宽调制功率信号,经 VD7,C4,L和C5进行高频整流滤波,获得 +12V,0.5A的稳压输出。反馈线圈 N3上的电压则通过 VD6,R2、C3整流滤波后,将控制电流加至控制端 C上。由VD5,R1,和C2构成的吸收回路,能有效抑制漏极上的反向峰值电压。该电路的稳压原理分析如下:当由于某种原因致使Uo4时,反馈线圈电压及控制端电流也随之降低,而芯片内部产生的误差电压 Urt时,PWM比较器输出的脉冲占空比 Dt,经过MOSFET和降压式输出电路使得 Uot,最终能维持输出电压不变。反之亦然。如图所示12v开关电源电路图
标签: 开关电源
上传时间: 2022-06-26
上传用户:
电源是电子设备的重要组成部分,其性能的优劣直接影响着电子设备的稳定性和可靠性,随着电子技术的发展,电子设备的种类越来越多,其对电源的要求也更加灵活多样,因此如何很好的解决系统的电源问题已经成为了系统成败的关键因素。本论文研究选取了BICMOS工艺,具有功耗低、集成度高、驱动能力强等优点.根据电流模式的PWM控制原理,研究设计了一款基于BICMOS工艺的双相DC-DC电源管理芯片。本电源管理芯片自动控制两路单独的转换器工作,两相结构能提供大的输出电流,但是在开关上的功耗却很低。芯片能够精确的调整CPU核心电压,对称不同通道之间的电流。本电源管理芯片单独检测每一通道上的电流,以精确的获得每个通道上的电流信息,从而更好的进行电流对称以及电路的保护。文中对该DC-DC电源管理芯片的主要功能模块,如振荡器电路、锯齿波发生电路、比较器电路、平均电流电路、电流检测电路等进行了设计并给出了仿真验证结果。该芯片只需外接少数元件就可构成一个高性能的双相DC-DC开关电源,可广泛应用于CPU供电系统等。通过应用Hspice软件对该变换器芯片的主要模块电路进行仿真,验证了设计方案和理论分析的可行性和正确性,同时在芯片模块电路设计的基础上,应用0.8umBICMOS工艺设计规则完成了芯片主要模块的版图绘制,编写了DRC.LVS文件并验证了版图的正确性。所设计的基于BICMOS工艺的DC-DC电源管理芯片的均流控制电路达到了预期的要求。
标签: DC-DC电源管理
上传时间: 2022-06-26
上传用户:
引言开关电源(SMPS:Switch Mode Power Supply)是利用现代电力电子技术,控制开关管开通和关断的时问比率,维持稳定输出电压的一种电源·非隔离式DC/DC变换具有六种基本拓扑结构:降压(Buck)变换器升压(Boost)变换器极性反转升降压(Buck2Boost)变换器Cuk(Boost2Buck 联)变换器Sepic变换器Zeta变换器[-1,与线性电源相比,开关电源具有体积小重量轻效率高自身抗干扰性强输出电压范围宽模块化等优点。LTspice IV是LT公司推出的SPICE电路仿真软件,具有集成电路图捕获和波形观测功能。LTspice IV内置新型SPIE元件,能快速进行SMPS交互式仿真,且无元件或节点数目的限制.LTspice IV虽然与开关模式电源设计配合使用,但它并不是SMPS专用型SPICE软件,而是一款通用型SPICE-LTspice IV内置了LT公司新型SPARSE矩阵求解器,采用专有的并行处理方法,实现了对任务的高效并行处理"。
上传时间: 2022-06-26
上传用户:
本文的主要介绍了逆变器电路 DIY制作过程,并介绍了逆变器工作原理、逆变器电路图及逆变器的性能测试。本文制作的的逆变器(见图1)主要由MOS场效应管,普通电源变压器构成。其输出功率取决于MOS场效应管和电源变压器的功率,免除了烦琐的变压器绕制,适合电子爱好者业余制作中采用。下面介绍该逆变器的工作原理及制作过程。这里采用六反相器 CD4069构成方波信号发生器。电路中 R1是补偿电阻,用于改善由于电源电压的变化而引起的振荡频率不稳。电路的振荡是通过电容 C1充放电完成的。其振荡频率为 f=122RC.图示电路的最大频率为:fmax=1/2.2 ×3.3 ×103x22 ×10-6-62.6Hz,最小频率min-12.2 x.3 x03x22 x0-6-48.0Hz由于元件的误差,实际值会略有差异。其它多余的反相器,输入端接地避免影响其它电路。#p#场效应管驱动电路#e#
标签: 逆变器
上传时间: 2022-06-26
上传用户:
基于TDS2285芯片的正弦波1200W逆变器开发指南以TDS2285芯片为核心,打造一款正弦波1200W逆变机器,使大家对TDS2285芯片有更深入的了解。我们知道在许多逆变的场合中,都是低压DC直流电源要变成高压AC电源,所以中间是需要升压才能完成这一变化,我们此次讨论的依然是采用高颖的方式来做逆变,采用高频的方式相对于工频方式来做有许多优点:高转换效率,极低的空载电流,重量轻,体积小等。也许有人会说工频的皮实,耐冲击,对于这一点我也非常认同,不过需要指出的是,高频的做的好,一点也不会输于工额的,这一点,已经通过我们公司的产品和TDS2285的出货情况得到了肯定,所以,以下就让大家看看TDS2285芯片在该系统中表现吧!DC-DC升压部分:此次设计是采用DC24V输入,为了要保证输出AC220,在此环节中,DC-DC升压部分至少需要将DC24V升压到220VAC*1.414-DC31 1v,这样在311V的基础上才能有稳定的AC220V出来,为了能达到这一目地,我们采用非常熟悉的推挽电路TOP来做该DC-DC变换,电路图如下:
上传时间: 2022-06-26
上传用户:
系统的讲解开关电源几项最新技术,BUCK模式的PFC-IC,ICC控制方式的DC-DC,控制功率MOS源极的反激变换器;
标签: 开关电源
上传时间: 2022-06-29
上传用户:
摘要:商用无人机云台是立足于无人机高空操控优势,通过无线遥控来进行航空摄影、系统立体测绘地面图像或者准确操控附带设备的驱动装置,主要功能是利用高精度电机控制,实现摄像设备对X,Y,2三维空间的精准角度控制,以达到精确控制设备操作角度的效果。云台系统的控制精度对这个无人机的摄像性能及操控效果有着至关重要的作用。目前在云台控制算法上比较先进的控制算法都本掌握在国内领先的几家厂家手上,大部分云台设计都沿用了传统的直流有刷电机的控制或者120°BLDC控制,在防抖效果及控制精度上都有需要改进的地方,通过对产品的分析将FOC算法融入云台控制,将有助于达到提升防抖效果及控制精度的效果,尤其是将磁编码器替换传统的电位器设计,可以在控制精度,提高使用寿命,降低噪声,减少生产难度等方便带来极大优势。关键字:无人机云台PISMFOC控制算法磁编码器正文:引言:云台控制的核心主要分为两大部分:电机控制和角度控制,电机控制的关键包括MCU编程及功率器件的控制,角度控制则包括编码器的结构安装设计及控制等。将FOC控制及磁编应用稳定运用到无人机云台控制系统中,有助于提高电机控制精度,减低系统噪声,降低功耗,减少飞行控制主系统的运算开销,提高产品工作寿命等作用,从而提升无人机整体性能。
上传时间: 2022-06-30
上传用户:
系统原理说明:结构上,该逆变器采用模块化的设计思想,分别为升压模块、逆变模块、低通滤波器等。通过升压模块M1进行DC/DC变化,将输入110VDC电压转换350VDC,然后通过逆变模块M2进行DC/AC变换,输出三相200VAC的SPWM波,最后经过输出滤波器滤波后输出三相200V正弦波。逆变器仅在紧急情况下使用,系统上采用了简洁、可靠的设计思想,对外接口只有电压110V输入一组,3相交流输出一组,启动信号一组和故障指示一组,见图2:110V+为110V电源输入正极;110VG为110V电源输入负极;START1与START2为紧急逆变器启动控制;FAULT1与FAULT2为紧急逆变器故障报警信号端口;U、V、W为逆变器的3相200V输出端。逆变器长期处于冷待机状态,当接收到启动信号之后,紧急逆变器开始工作。当空调主电源无法为空调提供电源的时候,地铁车辆内的控制器将吸合内部的无源触头作为紧急逆变器的启动信号(即图2中START1与START2闭合导通时,紧急逆变器启动)。紧急逆变器启动信号回路形成后,如果输入电压正常、逆变器无故障时,紧急逆变器将在20s内完成启动并开始稳定工作。紧急逆变器正常工作时,故障报警触点处于吸合状态;紧急逆变器出现故障时,三相输出停止,故障报警触点断开。(即:正常时,FAULT1与FAULT2闭合导通;故障时,FAULT1与FAULT2开路。)
上传时间: 2022-07-01
上传用户:
本资源为2015年全国大学生电子设计竞赛A题,其中包含了代码及电路图,有需要的朋友可以下载。下面是本资源的部分摘要:本系统以STM32单片机为主控制器,以非隔离式Buck-Boost型电路为核心,设计并制作用于电池储能装置的双向DC-DC变换器,实现可按键设定亦可自动转换电池充放电模式的功能。系统由STM32内部寄存器及扩展口功能,加上按键模块、集成运放模块、LCD液晶显示模块、双向DC-DC变换电路组成。提高了电源效率,有效的保护了电路,经测试,系统能够实现基础部分所有要求。
标签: DC-DC变换器 全国大学生电子设计竞赛
上传时间: 2022-07-05
上传用户:得之我幸78
脉宽调制(PWM)DC/DC充全桥变换器适用于中大功率变换场合,为了实现其高效率、高功率密度和高可靠性,有必要研究其软开关技术。《脉宽调制DC/DC全桥变换器的软开关技术(第二版)》系统阐述PWM DC/民金桥变换器的软开关技术。系统提出DC/DC金桥变换器的一族PWM控制方式,并对这些PWM控制方式进行分析,指出为了实现PWM DC/DC全桥变换器的软开关,必须引人超前桥臂和滞后桥臂的概念,而且超前桥臂只能实现零电压开关(ZVS),滞后桥臂可以实现ZVS或零电流开关(ZCS)钮根据超前桥臂和滞后桥臀实现软开关的方式,将软开关PWM DC/DC全桥变换器归纳为ZVS和ZVZCS两种类型,并讨论这两类变换器的电路拓扑、控制方式和工作原理。提出消除输出整流二极管反向恢复引起的电压振荡的方法,包括加入籍位二极管与电流互感器和采用输出倍流整流电路方法。介绍PWM DC/DC全桥变换器的主要元件,包括输入滤波电容、高频变压器、输出滤波电感和滤波电容的设计,介绍移相控制芯片UC3875的使用以及IGBT和MOSFET的驱动电路,给出一种采用ZVS PWM DC/DC全桥变换器的通讯用开关电源的设计实例。
标签: 脉宽调制 DC/DC全桥变换器 软开关
上传时间: 2022-07-05
上传用户:20125101110