在工业应用中常用一组传感器对问一个被测量目标在一个过程的不同位置进行测量,然而由于每个传感器位于过程的不同位置,它们将不问程度的受到嗓声的干扰,为了从被嗓声干扰的多传感器测量值中获得更准确的测量结果,霱要进“步研究多传感器的融合理论多传感器数据融合系统的关键在于如何充分利用各个传感器的信息,得到对被测参数的最优估计,本文主要研究了以加权的方式进行多传感器数据融合的方法,即研究如何对每个传感器进行加权,从而得到对被测参数最优佑计的方法为此本文在介绍了多传感器数据融合技术的基础上,首先研究了基于奇异值分解的数据融合算法,通过对传感器测量值构成的矩阵进行奇异值分解,利用每个传感器测量值所对应的奇异值,可以估计出对每个传感器权值的最优估计,从而在不要任何先验知识的条件下,可仅由多传感器的测量值,利用提出的算法得到在最小均方误差意义下的被测参数的最优估计,此外,在许多工业过程中,人们利用多传感器测量同一过程参数以控制该参数在过程中的不同位置能根据需要进行合理分布,此时人们希望利用多传感器融合的测量结果,对每一个传感器的测量数据进行重建,以获得对每一个传感器的测量结果进行更为准确的估计。为此,本文进一步研究了基于小波降噪和数据融合的传感器数据重建算法,仿真和实验结果都说明提出算法是有效的,最后,研究了非线性动态系统的状态融合问题,研究了加权无气味卡尔曼滤波(UKF)方法,研究表明无气味卡尔曼波波能克服了扩展卡尔曼滤波(EKF)在状态融合估计中的不足,可以得到了更准确的状态融合估计结关键词多传感器系统,数据融合,奇异值分解,UKF
上传时间: 2022-03-16
上传用户:aben
为了克服传统的局部特征匹配算法对噪声和图像灰度非线性变换敏感的不足,提出了基于SIFT(Scale Invariant Feature Transform)描述算子的特征匹配算法。该算法首先
上传时间: 2013-04-24
上传用户:hphh
多传感器信息融合是对多种信息的获取、表示及其内在联系进行综合处理和优化的技术。单一传感器只能获得环境或被测对象的部分信息段,多传感器信息融合后可以完善地、准确地反映环境特征。本文介绍多传感器数据融合的基本理论。数据融合是把来自不同传感器数据加以综合、相关、互联,提高定位和特征估计的精度。文章对Kalman融合算法进行仿真,对结果进行分析。验证算法的可行性。
上传时间: 2013-10-08
上传用户:zhaoke2005
针对红外图像边缘模糊,对比度低的问题,文中研究了改进的中值滤波和改进的Sobel边缘检测对红外图像进行处理。在对处理后图像的特征进行分析的基础上,研究了改进的Laplace金字塔分解的图像融合算法,并基于CUDA并行处理技术,在可编程GPU上实现了红外图像快速增强的目的。该算法结合GPU的内存特点,应用纹理映射、多点访问、并行触发技术,优化数据的存储结构,提高数据处理速度,适用于对红外图像增强的实时性要求较高的领域。实验结果表明,该算法有较好的并行特性,能充分利用CUDA的并行计算能力,提高了红外图像增强的实时性,处理分辨率为3 096×3 096的红外图像时加速比达32.189。
上传时间: 2014-01-03
上传用户:mh_zhaohy
基于通用GPU并行计算技术,结合遥感图像数据融合处理特点,利用NVIDIA公司的CUDA编程框架,在其 GPU平台上对BROVEY变换和YIQ变换融合算法进行了并行研究与实现。实验结果表明,随着遥感图像融合算法的计算复杂度、融合处理的问题规模逐渐增加,GPU并行处理的加速性能优势也逐渐增大,GPU通用计算技术在遥感信息处理领域具有广阔的应用前景。
上传时间: 2013-12-10
上传用户:kangqiaoyibie
基于Mean Shift算法和Particle Filter算法的目标跟踪学位论文:讨论了MeanS hift算法(均值偏移)和粒子滤波算法(Particle Filter),分析了两种算法的特点;,分析了用运动目标检测提取目标运动特征的技术,通过增加对目标特征描述信 息,提高跟踪健壮性,并在以颜色直方图描述颜色特征的基础上,融合了目标的运动特征,设计了一种基于运动特征和颜色特征多特征融合的粒子滤波跟踪方法;用二阶直方图描述颜色特征,设计了均值偏移和粒子滤波相结合的目标跟踪技术
标签: Particle Filter Shift MeanS
上传时间: 2017-01-14
上传用户:曹云鹏
一个用于图像景深融合的算法,用matlab内嵌函数实现
上传时间: 2016-07-07
上传用户:soleczm
随着杜会和经济的发展,环境水污染现象也日趋严重,迫切需要环境水质多参数监测与智能分析系统,以为环境监测、管理和控制提供科学的手段。水质多组分检测涉及到多传感器数据融合、计算机技术、电化学分析和人工智能等多学科的交叉,在众多领域有着广泛的应用。本论文研究环境水质检测与智能分析系统,论文的主要工作包括1)基于最小二乘支持向量机的在线自适应加权数据融合算法多传感器数据融合由于能够利用互补和冗余的信息,显著提高系统的可靠性而得到了广泛应用,而数据融合的关键问题是融合算法。本文深入研究了多传感器数据融合理论的基础上,针对传统融合算法研究存在的问题,提出了一种基于最小二乘支持向量机的在线自适应加权数据融合算法,并应用到水质在线检测过程中,不仅缩短了训练的时间,而且提高了融合的可靠性和灵活性2)提出了一种离子传感器的基于最小二乘支持向量机的自校正方法:由于离子传感器的非线性、漂移和交叉敏感性等影响了其检测精度和可靠性,难以进行连续在线检测。以硝酸根离子传感器为例,研究其自校正方法,以适应动态环境的连续监测根据实验数据,详细分析了硝酸根离子传感器的响应特性,并考虑了零点和时间漂移,提出了一种基于最小二乘支持向量机硝酸根离子传感器的自校正方法,给出了详细描述和分析。3)离子传感器故障检测的小波支持向量机特征提取和支持向量机分类方法在线连续检测的应用要求离子传感器必须具有很高的可靠性,即能够及时准确地判断出离子传感器的故障。本文采用小波支持向量机提取各传感器故障特征,再用支持向量机对故障进行分类,实现对各离子传感器的故障诊断。
标签: 数据融合
上传时间: 2022-03-18
上传用户:
针对齿轮故障特征信号具有强噪声背景、非线性、非平稳性特点,提出采用形态梯度小波对齿轮振动信号进行降噪。首先使用形态梯度小波把齿轮振动信号分解到多个尺度上,然后对各层的细节系数进行软阈值方法降噪处理,对经过处理后的小波系数进行重构。对降噪后的齿轮振动信号采用S变换多分辨率时频分析,能够从具有良好的时频分辨率的S变换谱图提取齿轮故障特征。通过仿真试验和故障轴承的信号分析证明,该方法具有短时傅里叶变换和小波变换的优点,不存在Wigner-Ville分布的交叉干扰和负频率,能有效地提取隐含在噪声中的齿轮故障特征,适合齿轮故障的在线监测和诊断。
上传时间: 2013-11-01
上传用户:AISINI005
在深入的对频谱脸法和Fisherface方法进行研究后,综合这两种方法的优点,提出了一种基于频谱脸和Fisherface的人脸识别新方法。频谱脸方法主要是采用二维小波变换和傅立叶变换。因为人脸图像的低频部分对人脸的表情变化是不敏感的,所以对人脸图像使用二维小波变换,提取人脸图像的低频部分。对人脸图像的低频部分使用傅立叶变换,从而获得原人像的一个低维空间的表达。但是频谱脸特征维数仍然较高,所以在频谱脸法的基础上继续提取人脸频谱图像的Fisherface 特征,降低特征的维数,提高识别效率。利用人脸面部构造产生的灰度特性提取眼睛,利用嘴唇的色度特征分割出嘴巴,进而根据眼睛和嘴巴构成三角形模板的特性,精确定位人脸在图像中的位置。实验结果表明,这种结合肤色和面部特征的算法,能够对人脸进行较快速、准确的定位,而且结果比较稳定可靠。
上传时间: 2013-10-09
上传用户:zhf01y