本书全面、系统地介绍了MCS-51系列单片机应用系统的各种实用接口技术及其配置。 内容包括:MCS-51系列单片机组成原理:应用系统扩展、开发与调试;键盘输入接口的设计及调试;打印机和显示器接口及设计实例;模拟输入通道接口技术;A/D、D/A、接口技术及在控制系统中的应用设计;V/F转换器接口技术、串行通讯接口技术以及其它与应用系统设计有关的实用技术等。 本书是为满足广大科技工作者从事单片机应用系统软件、硬件设计的需要而编写的,具有内容新颖、实用、全面的特色。所有的接口设计都包括详细的设计步骤、硬件线路图及故障分析,并附有测试程序清单。书中大部分接口软、硬件设计实例都是作者多年来从事单片机应用和开发工作的经验总结,实用性和工程性较强,尤其是对应用系统中必备的键盘、显示器、打印机、A/D、D/A通讯接口设计、模拟信号处理及开发系统应用举例甚多,目的是让将要开始和正在从事单片机应用开发的科研人员根据自己的实际需要来选择应用,一书在手即可基本完成单片机应用系统的开发工作。 本书主要面向从事单片机应用开发工作的广大工程技术人员,也可作为大专院校有关专业的教材或教学参考书。 第一章MCS-51系列单片机组成原理 1.1概述 1.1.1单片机主流产品系列 1.1.2单片机芯片技术的发展概况 1.1.3单片机的应用领域 1.2MCS-51单片机硬件结构 1.2.1MCS-51单片机硬件结构的特点 1.2.2MCS-51单片机的引脚描述及片外总线结构 1.2.3MCS-51片内总体结构 1.2.4MCS-51单片机中央处理器及其振荡器、时钟电路和CPU时序 1.2.5MCS-51单片机的复位状态及几种复位电路设计 1.2.6存储器、特殊功能寄存器及位地址空间 1.2.7输入/输出(I/O)口 1.3MCS-51单片机指令系统分析 1.3.1指令系统的寻址方式 1.3.2指令系统的使用要点 1.3.3指令系统分类总结 1.4串行接口与定时/计数器 1.4.1串行接口简介 1.4.2定时器/计数器的结构 1.4.3定时器/计数器的四种工作模式 1.4.4定时器/计数器对输入信号的要求 1.4.5定时器/计数器的编程和应用 1.5中断系统 1.5.1中断请求源 1.5.2中断控制 1.5.3中断的响应过程 1.5.4外部中断的响应时间 1.5.5外部中断方式的选择 第二章MCS-51单片机系统扩展 2.1概述 2.2程序存贮器的扩展 2.2.1外部程序存贮器的扩展原理及时序 2.2.2地址锁存器 2.2.3EPROM扩展电路 2.2.4EEPROM扩展电路 2.3外部数据存贮器的扩展 2.3.1外部数据存贮器的扩展方法及时序 2.3.2静态RAM扩展 2.3.3动态RAM扩展 2.4外部I/O口的扩展 2.4.1I/O口扩展概述 2.4.2I/O口地址译码技术 2.4.38255A可编程并行I/O扩展接口 2.4.48155/8156可编程并行I/O扩展接口 2.4.58243并行I/O扩展接口 2.4.6用TTL芯片扩展I/O接口 2.4.7用串行口扩展I/O接口 2.4.8中断系统扩展 第三章MCS-51单片机应用系统的开发 3.1单片机应用系统的设计 3.1.1设计前的准备工作 3.1.2应用系统的硬件设计 3.1.3应用系统的软件设计 3.1.4应用系统的抗干扰设计 3.2单片机应用系统的开发 3.2.1仿真系统的功能 3.2.2开发手段的选择 3.2.3应用系统的开发过程 3.3SICE—IV型单片机仿真器 3.3.1SICE-IV仿真器系统结构 3.3.2SICE-IV的仿真特性和软件功能 3.3.3SICE-IV与主机和终端的连接使用方法 3.4KHK-ICE-51单片机仿真开发系统 3.4.1KHK—ICE-51仿真器系统结构 3.4.2仿真器系统功能特点 3.4.3KHK-ICE-51仿真系统的安装及其使用 3.5单片机应用系统的调试 3.5.1应用系统联机前的静态调试 3.5.2外部数据存储器RAM的测试 3.5.3程序存储器的调试 3.5.4输出功能模块调试 3.5.5可编程I/O接口芯片的调试 3.5.6外部中断和定时器中断的调试 3.6用户程序的编辑、汇编、调试、固化及运行 3.6.1源程序的编辑 3.6.2源程序的汇编 3.6.3用户程序的调试 3.6.4用户程序的固化 3.6.5用户程序的运行 第四章键盘及其接口技术 4.1键盘输入应解决的问题 4.1.1键盘输入的特点 4.1.2按键的确认 4.1.3消除按键抖动的措施 4.2独立式按键接口设计 4.3矩阵式键盘接口设计 4.3.1矩阵键盘工作原理 4.3.2按键的识别方法 4.3.3键盘的编码 4.3.4键盘工作方式 4.3.5矩阵键盘接口实例及编程要点 4.3.6双功能及多功能键设计 4.3.7键盘处理中的特殊问题一重键和连击 4.48279键盘、显示器接口芯片及应用 4.4.18279的组成和基本工作原理 4.4.28279管脚、引线及功能说明 4.4.38279编程 4.4.48279键盘接口实例 4.5功能开关及拨码盘接口设计 第五章显示器接口设计 5.1LED显示器 5.1.1LED段显示器结构与原理 5.1.2LED显示器及显示方式 5.1.3LED显示器接口实例 5.1.4LED显示器驱动技术 5.2单片机应用系统中典型键盘、显示接口技术 5.2.1用8255和串行口扩展的键盘、显示器电路 5.2.2由锁存器组成的键盘、显示器接口电路 5.2.3由8155构成的键盘、显示器接口电路 5.2.4用8279组成的显示器实例 5.3液晶显示LCD 5.3.1LCD的基本结构及工作原理 5.3.2LCD的驱动方式 5.3.34位LCD静态驱动芯片ICM7211系列简介 5.3.4点阵式液晶显示控制器HD61830介绍 5.3.5点阵式液晶显示模块介绍 5.4荧光管显示 5.5LED大屏幕显示器 第六章打印机接口设计 6.1打印机简介 6.1.1打印机的基本知识 6.1.2打印机的电路构成 6.1.3打印机的接口信号 6.1.4打印机的打印命令 6.2TPμP-40A微打与单片机接口设计 6.2.1TPμP系列微型打印机简介 6.2.2TPμP-40A打印功能及接口信号 6.2.3TPμP-40A工作方式及打印命令 6.2.48031与TPμP-40A的接口 6.2.5打印编程实例 6.3XLF微型打印机与单片机接口设计 6.3.1XLF微打简介 6.3.2XLF微打接口信号及与8031接口设计 6.3.3XLF微打控制命令 6.3.4打印机编程 6.4标准宽行打印机与8031接口设计 6.4.1TH3070接口引脚信号及时序 6.4.2与8031的简单接口 6.4.3通过打印机适配器完成8031与打印机的接口 6.4.4对打印机的编程 第七章模拟输入通道接口技术 7.1传感器 7.1.1传感器的分类 7.1.2温度传感器 7.1.3光电传感器 7.1.4湿度传感器 7.1.5其他传感器 7.2模拟信号放大技术 7.2.1基本放大器电路 7.2.2集成运算放大器 7.2.3常用运算放大器及应用举例 7.2.4测量放大器 7.2.5程控增益放大器 7.2.6隔离放大器 7.3多通道模拟信号输入技术 7.3.1多路开关 7.3.2常用多路开关 7.3.3模拟多路开关 7.3.4常用模拟多路开关 7.3.5多路模拟开关应用举例 7.3.6多路开关的选用 7.4采样/保持电路设计 7.4.1采样/保持原理 7.4.2集成采样/保持器 7.4.3常用集成采样/保持器 7.4.4采样保持器的应用举例 7.5有源滤波器的设计 7.5.1滤波器分类 7.5.2有源滤波器的设计 7.5.3常用有源滤波器设计举例 7.5.4集成有源滤波器 第八章D/A转换器与MCS-51单片机的接口设计与实践 8.1D/A转换器的基本原理及主要技术指标 8.1.1D/A转换器的基本原理与分类 8.1.2D/A转换器的主要技术指标 8.2D/A转换器件选择指南 8.2.1集成D/A转换芯片介绍 8.2.2D/A转换器的选择要点及选择指南表 8.2.3D/A转换器接口设计的几点实用技术 8.38位D/A转换器DAC080/0831/0832与MCS-51单片机的接口设计 8.3.1DAC0830/0831/0832的应用特性与引脚功能 8.3.2DAC0830/0831/0832与8031单片机的接口设计 8.3.3DAC0830/0831/0832的调试说明 8.3.4DAC0830/0831/0832应用举例 8.48位D/A转换器AD558与MCS-51单片机的接口设计 8.4.1AD558的应用特性与引脚功能 8.4.2AD558与8031单片机的接口及调试说明 8.4.38位D/A转换器DAC0800系列与8031单片机的接口 8.510位D/A转换器AD7522与MCS-51的硬件接口设计 8.5.1AD7522的应用特性及引脚功能 8.5.2AD7522与8031单片机的接口设计 8.610位D/A转换器AD7520/7530/7533与MCS一51单片机的接口设计 8.6.1AD7520/7530/7533的应用特性与引脚功能 8.6.2AD7520系列与8031单片机的接口 8.6.3DAC1020/DAC1220/AD7521系列D/A转换器接口设计 8.712位D/A转换器DAC1208/1209/1210与MCS-51单片机的接口设计 8.7.1DAC1208/1209/1210的内部结构与引脚功能 8.7.2DAC1208/1209/1210与8031单片机的接口设计 8.7.312位D/A转换器DAC1230/1231/1232的应用设计说明 8.7.412位D/A转换器AD7542与8031单片机的接口设计 8.812位串行DAC-AD7543与MCS-51单片机的接口设计 8.8.1AD7543的应用特性与引脚功能 8.8.2AD7543与8031单片机的接口设计 8.914位D/A转换器AD75335与MCS-51单片机的接口设计 8.9.1AD8635的内部结构与引脚功能 8.9.2AD7535与8031单片机的接口设计 8.1016位D/A转换器AD1147/1148与MCS-51单片机的接口设计 8.10.1AD1147/AD1148的内部结构及引脚功能 8.10.2AD1147/AD1148与8031单片机的接口设计 8.10.3AD1147/AD1148接口电路的应用调试说明 8.10.416位D/A转换器AD1145与8031单片机的接口设计 第九章A/D转换器与MCS-51单片机的接口设计与实践 9.1A/D转换器的基本原理及主要技术指标 9.1.1A/D转换器的基本原理与分类 9.1.2A/D转换器的主要技术指标 9.2面对课题如何选择A/D转换器件 9.2.1常用A/D转换器简介 9.2.2A/D转换器的选择要点及应用设计的几点实用技术 9.38位D/A转换器ADC0801/0802/0803/0804/0805与MCS-51单片机的接口设计 9.3.1ADC0801~ADC0805芯片的引脚功能及应用特性 9.3.2ADC0801~ADC0805与8031单片机的接口设计 9.48路8位A/D转换器ADC0808/0809与MCS一51单片机的接口设计 9.4.1ADC0808/0809的内部结构及引脚功能 9.4.2ADC0808/0809与8031单片机的接口设计 9.4.3接口电路设计中的几点注意事项 9.4.416路8位A/D转换器ADC0816/0817与MCS-51单片机的接口设计 9.510位A/D转换器AD571与MCS-51单片机的接口设计 9.5.1AD571芯片的引脚功能及应用特性 9.5.2AD571与8031单片机的接口 9.5.38位A/D转换器AD570与8031单片机的硬件接口 9.612位A/D转换器ADC1210/1211与MCS-51单片机的接口设计 9.6.1ADC1210/1211的引脚功能与应用特性 9.6.2ADC1210/1211与8031单片机的硬件接口 9.6.3硬件接口电路的设计要点及几点说明 9.712位A/D转换器AD574A/1374/1674A与MCS-51单片机的接口设计 9.7.1AD574A的内部结构与引脚功能 9.7.2AD574A的应用特性及校准 9.7.3AD574A与8031单片机的硬件接口设计 9.7.4AD574A的应用调试说明 9.7.5AD674A/AD1674与8031单片机的接口设计 9.8高速12位A/D转换器AD578/AD678/AD1678与MCS—51单片机的接口设计 9.8.1AD578的应用特性与引脚功能 9.8.2AD578高速A/D转换器与8031单片机的接口设计 9.8.3AD578高速A/D转换器的应用调试说明 9.8.4AD678/AD1678采样A/D转换器与8031单片机的接口设计 9.914位A/D转换器AD679/1679与MCS-51单片机的接口设计 9.9.1AD679/AD1679的应用特性及引脚功能 9.9.2AD679/1679与8031单片机的接口设计 9.9.3AD679/1679的调试说明 9.1016位ADC-ADC1143与MCS-51单片机的接口设计 9.10.1ADC1143的应用特性及引脚功能 9.10.2ADC1143与8031单片机的接口设计 9.113位半积分A/D转换器5G14433与MCS-51单片机的接口设计 9.11.15G14433的内部结构及引脚功能 9.11.25G14433的外部电路连接与元件参数选择 9.11.35G14433与8031单片机的接口设计 9.11.45G14433的应用举例 9.124位半积分A/D转换器ICL7135与MCS—51单片机的接口设计 9.12.1ICL7135的内部结构及芯片引脚功能 9.12.2ICL7135的外部电路连接与元件参数选择 9.12.3ICL7135与8031单片机的硬件接口设计 9.124ICL7135的应用举例 9.1312位双积分A/D转换器ICL7109与MCS—51单片机的接口设计 9.13.1ICL7109的内部结构与芯片引脚功能 9.13.2ICL7109的外部电路连接与元件参数选择 9.13.3ICL7109与8031单片机的硬件接口设计 9.1416位积分型ADC一ICL7104与MCS-51单片机的接口设计 9.14.1ICL7104的主要应用特性及引脚功能 9.14.2ICL7104与8031单片机的接口设计 9.14.3其它积分型A/D转换器简介 第十章V/F转换器接口技术 10.1V/F转换的特点及应用环境 10.2V/F转换原理及用V/F转换器实现A/D转换的方法 10.2.1V/F转换原理 10.2.2用V/F转换器实现A/D转换的方法 10.3常用V/F转换器简介 10.3.1VFC32 10.3.2LMX31系列V/F转换器 10.3.3AD650 10.3.4AD651 10.4V/F转换应用系统中的通道结构 10.5LM331应用实例 10.5.1线路原理 10.5.2软件设计 10.6AD650应用实例 10.6.1AD650外围电路设计 10.6.2定时/计数器(8253—5简介) 10.6.3线路原理 10.6.4软件设计 第十一章串行通讯接口技术 11.1串行通讯基础 11.1.1异步通讯和同步通讯 11.1.2波特率和接收/发送时钟 11.1.3单工、半双工、全双工通讯方式 11.14信号的调制与解调 11.1.5通讯数据的差错检测和校正 11.1.6串行通讯接口电路UART、USRT和USART 11.2串行通讯总线标准及其接口 11.2.1串行通讯接口 11.2.2RS-232C接口 11.2.3RS-449、RS-422、RS-423及RS485 11.2.420mA电流环路串行接口 11.3MCS-51单片机串行接口 11.3.1串行口的结构 11.3.2串行接口的工作方式 11.3.3串行通讯中波特率设置 11.4MCS-51单片机串行接口通讯技术 11.4.1单片机双机通讯技术 11.4.2单片机多机通讯技术 11.5IBMPC系列机与单片机的通讯技术 11.5.1异步通讯适配器 11.5.2IBM-PC机与8031双机通讯技术 11.5.3IBM—PC机与8031多机通讯技术 11.6MCS-51单片机串行接口的扩展 11.6.1Intel8251A可编程通讯接口 11.6.2扩展多路串行口的硬件设计 11.6.3通讯软件设计 第十二章应用系统设计中的实用技术 12.1MCS-51单片机低功耗系统设计 12.1.1CHMOS型单片机80C31/80C51/87C51的组成与使用要点 12.1.2CHMOS型单片机的空闲、掉电工作方式 12.1.3CHMOS型单片机的I/O接口及应用系统实例 12.1.4HMOS型单片机的节电运行方式 12.2逻辑电平接口技术 12.2.1集电极开路门输出接口 12.2.2TTL、HTL、ECL、CMOS电平转换接口 12.3电压/电流转换 12.3.1电压/0~10mA转换 12.3.2电压1~5V/4~20mA转换 12.3.30~10mA/0~5V转换 12.344~20mA/0~5V转换 12.3.5集成V/I转换电路 12.4开关量输出接口技术 12.4.1输出接口隔离技术 12.4.2低压开关量信号输出技术 12.4.3继电器输出接口技术 12.4.4可控硅(晶闸管)输出接口技术 12.4.5固态继电器输出接口 12.4.6集成功率电子开关输出接口 12.5集成稳压电路 12.5.1电源隔离技术 12.5.2三端集成稳压器 12.5.3高精度电压基准 12.6量程自动转换技术 12.6.1自动转换量程的硬件电路 12.6.2自动转换量程的软件设计 附录AMCS-51单片机指令速查表 附录B常用EPROM固化电压参考表 参考文献
上传时间: 2013-10-15
上传用户:himbly
附件是51mini仿真器中文使用手册,其中包括有51mini的驱动,USB安装指南及USB驱动程序。 2003 年 SST 公司推出了 SST89C54/58 芯片,并且在官方网站公布了单片机仿真程序,配合 KEIL 可以实现标 准 51 内核芯片的单步调试等等,从而实现了一个简单的 51 单片机仿真方案,将仿真器直接拉低到一颗芯片的价 格。 但是, 1 分钱 1 分货,这个仿真方案由于先天的缺陷存在若干重大问题: 占用 p30,p31 端口 占用定时器 2 占用 8 个 sp 空间 运行速度慢 最高通信速度只有 38400,无法运行 c 语言程序。(由于 c 语言程序会调用库文件,每单步一次 的时间足够你吃个早饭) 所以,网上大量销售的这种这种仿真器最多只能仿真跑马灯等简单程序,并没有实际使用价值。51mini 是深 圳市学林电子有限公司开发生产的具有自主知识产权的新一代专业仿真器,采用双 CPU 方案,一颗负责和 KEIL 解 释,另外一颗负责运行用户程序,同时巧妙利用 CPU 的 P4 口通信,释放 51 的 P30,P31,完美解决了上述问题, 体积更小,是目前价格最低的专业级别 51 单片机仿真器,足以胜任大型项目开发。 51mini仿真器创新设计: 1 三明治夹心双面贴片,体积缩小到只有芯片大小,真正的“嵌入式”结构。 2 大量采用最新工艺和器件,全贴片安装,进口钽电容,贴片电解。 3 采用快恢复保险,即便短路也可有效保护。 4 单 USB 接口,无需外接电源和串口,台式电脑、无串口的笔记本均适用。三 CPU 设计,采用仿真芯片+监控 芯片+USB 芯片结构,是一款真正独立的仿真器,不需要依赖开发板运行。 5 下载仿真通讯急速 115200bps,较以前版本提高一个数量级(10 倍以上),单步运行如飞。 6 不占资源,无限制真实仿真(32 个 IO、串口、T2 可完全单步仿真),真实仿真 32 条 IO 脚,包括任意使用 P30 和 P31 口。 7 兼容 keilC51 UV2 调试环境支持单步、断点、随时可查看寄存器、变量、IO、内存内容。可仿真各种 51 指 令兼容单片机,ATMEL、Winbond、INTEL、SST、ST 等等。可仿真 ALE 禁止,可仿真 PCA,可仿真双 DPTR,可仿真 硬件 SPI。媲美 2000 元级别专业仿真器! 8 独创多声响和 led 指示实时系统状态和自检。 9 独创长按复位键自动进入脱机运行模式,这时仿真机就相当于目标板上烧好的一个芯片,可以更加真实的运 行。这种情况下实际上就变了一个下载器,而且下次上电时仍然可以运行上次下载的程序。 USB 驱动的安装 第一步:用随机 USB 通讯电缆连接仪器的 USB 插座和计算机 USB口;显示找到新硬件向导,选择“从列表或指定位置安装(高级)”选项,进入下一步; 第二步:选择“在搜索中包括这个位置”,点击“浏览”,定位到配套驱动光盘的驱动程序文件夹,如 E:\驱动程序\XLISP 驱动程序\USBDRIVER2.0\,进入下一步; 第三步:弹出“硬件安装”对话框,如果系统提示“没有通过Windows 徽标测试…”,不用理会,点击“仍然继续”,向导即开始安装软件;然后弹出“完成找到新硬件向导”对话框,点击完成。 第四步:系统第二次弹出“找到新的硬件向导”对话框,重复以上几个步骤; 右下角弹出对话框“新硬件已安装并可以使用了”,表明 USB 驱动已成功安装。你可以进入系统的:控制面板\系统\硬件\设备管理器中看到以下端口信息, 表示系统已经正确的安装了 USB 驱动。
上传时间: 2013-11-02
上传用户:猫爱薛定谔
PSHLY-B回路电阻测试仪介绍
上传时间: 2013-11-05
上传用户:木子叶1
MSP430系列超低功耗16位单片机原理与应用TI公司的MSP430系列微控制器是一个近期推出的单片机品种。它在超低功耗和功能集成上都有一定的特色,尤其适合应用在自动信号采集系统、液晶显示智能化仪器、电池供电便携式装置、超长时间连续工作设备等领域。《MSP430系列超低功耗16位单片机原理与应用》对这一系列产品的原理、结构及内部各功能模块作了详细的说明,并以方便工程师及程序员使用的方式提供软件和硬件资料。由于MSP430系列的各个不同型号基本上是这些功能模块的不同组合,因此,掌握《MSP430系列超低功耗16位单片机原理与应用》的内容对于MSP430系列的原理理解和应用开发都有较大的帮助。《MSP430系列超低功耗16位单片机原理与应用》的内容主要根据TI公司的《MSP430 Family Architecture Guide and Module Library》一书及其他相关技术资料编写。 《MSP430系列超低功耗16位单片机原理与应用》供高等院校自动化、计算机、电子等专业的教学参考及工程技术人员的实用参考,亦可做为应用技术的培训教材。MSP430系列超低功耗16位单片机原理与应用 目录 第1章 MSP430系列1.1 特性与功能1.2 系统关键特性1.3 MSP430系列的各种型号??第2章 结构概述2.1 CPU2.2 代码存储器?2.3 数据存储器2.4 运行控制?2.5 外围模块2.6 振荡器、倍频器和时钟发生器??第3章 系统复位、中断和工作模式?3.1 系统复位和初始化3.2 中断系统结构3.3 中断处理3.3.1 SFR中的中断控制位3.3.2 外部中断3.4 工作模式3.5 低功耗模式3.5.1 低功耗模式0和模式13.5.2 低功耗模式2和模式33.5.3 低功耗模式43.6 低功耗应用要点??第4章 存储器组织4.1 存储器中的数据4.2 片内ROM组织4.2.1 ROM表的处理4.2.2 计算分支跳转和子程序调用4.3 RAM与外围模块组织4.3.1 RAM4.3.2 外围模块--地址定位4.3.3 外围模块--SFR??第5章 16位CPU?5.1 CPU寄存器5.1.1 程序计数器PC5.1.2 系统堆栈指针SP5.1.3 状态寄存器SR5.1.4 常数发生寄存器CG1和CG2?5.2 寻址模式5.2.1 寄存器模式5.2.2 变址模式5.2.3 符号模式5.2.4 绝对模式5.2.5 间接模式5.2.6 间接增量模式5.2.7 立即模式5.2.8 指令的时钟周期与长度5.3 指令集概述5.3.1 双操作数指令5.3.2 单操作数指令5.3.3 条件跳转5.3.4 模拟指令的简短格式5.3.5 其他指令5.4 指令分布??第6章 硬件乘法器?6.1 硬件乘法器的操作6.2 硬件乘法器的寄存器6.3 硬件乘法器的SFR位6.4 硬件乘法器的软件限制6.4.1 硬件乘法器的软件限制--寻址模式6.4.2 硬件乘法器的软件限制--中断程序??第7章 振荡器与系统时钟发生器?7.1 晶体振荡器7.2 处理机时钟发生器7.3 系统时钟工作模式7.4 系统时钟控制寄存器7.4.1 模块寄存器7.4.2 与系统时钟发生器相关的SFR位7.5 DCO典型特性??第8章 数字I/O配置?8.1 通用端口P08.1.1 P0的控制寄存器8.1.2 P0的原理图8.1.3 P0的中断控制功能8.2 通用端口P1、P28.2.1 P1、P2的控制寄存器8.2.2 P1、P2的原理图8.2.3 P1、P2的中断控制功能8.3 通用端口P3、P48.3.1 P3、P4的控制寄存器8.3.2 P3、P4的原理图8.4 LCD端口8.5 LCD端口--定时器/端口比较器??第9章 通用定时器/端口模块?9.1 定时器/端口模块操作9.1.1 定时器/端口计数器TPCNT1--8位操作9.1.2 定时器/端口计数器TPCNT2--8位操作9.1.3 定时器/端口计数器--16位操作9.2 定时器/端口寄存器9.3 定时器/端口SFR位9.4 定时器/端口在A/D中的应用9.4.1 R/D转换原理9.4.2 分辨率高于8位的转换??第10章 定时器?10.1 Basic Timer110.1.1 Basic Timer1寄存器10.1.2 SFR位10.1.3 Basic Timer1的操作10.1.4 Basic Timer1的操作--LCD时钟信号fLCD?10.2 8位间隔定时器/计数器10.2.1 8位定时器/计数器的操作10.2.2 8位定时器/计数器的寄存器10.2.3 与8位定时器/计数器有关的SFR位10.2.4 8位定时器/计数器在UART中的应用10.3 看门狗定时器11.1.3 比较模式11.1.4 输出单元11.2 TimerA的寄存器11.2.1 TimerA控制寄存器TACTL11.2.2 捕获/比较控制寄存器CCTL11.2.3 TimerA中断向量寄存器11.3 TimerA的应用11.3.1 TimerA增计数模式应用11.3.2 TimerA连续模式应用11.3.3 TimerA增/减计数模式应用11.3.4 TimerA软件捕获应用11.3.5 TimerA处理异步串行通信协议11.4 TimerA的特殊情况11.4.1 CCR0用做周期寄存器11.4.2 定时器寄存器的启/停11.4.3 输出单元Unit0??第12章 USART外围接口--UART模式?12.1 异步操作12.1.1 异步帧格式12.1.2 异步通信的波特率发生器12.1.3 异步通信格式12.1.4 线路空闲多处理机模式12.1.5 地址位格式12.2 中断与控制功能12.2.1 USART接收允许12.2.2 USART发送允许12.2.3 USART接收中断操作12.2.4 USART发送中断操作12.3 控制与状态寄存器12.3.1 USART控制寄存器UCTL12.3.2 发送控制寄存器UTCTL12.3.3 接收控制寄存器URCTL12.3.4 波特率选择和调制控制寄存器12.3.5 USART接收数据缓存URXBUF12.3.6 USART发送数据缓存UTXBUF12.4 UART模式--低功耗模式应用特性12.4.1 由UART帧启动接收操作12.4.2 时钟频率的充分利用与UART模式的波特率12.4.3 节约MSP430资源的多处理机模式12.5 波特率的计算??第13章 USART外围接口--SPI模式?13.1 USART的同步操作13.1.1 SPI模式中的主模式--MM=1、SYNC=113.1.2 SPI模式中的从模式--MM=0、SYNC=113.2 中断与控制功能13.2.1 USART接收允许13.2.2 USART发送允许13.2.3 USART接收中断操作13.2.4 USART发送中断操作13.3 控制与状态寄存器13.3.1 USART控制寄存器13.3.2 发送控制寄存器UTCTL13.3.3 接收控制寄存器URCTL13.3.4 波特率选择和调制控制寄存器13.3.5 USART接收数据缓存URXBUF13.3.6 USART发送数据缓存UTXBUF??第14章 液晶显示驱动?14.1 LCD驱动基本原理14.2 LCD控制器/驱动器14.2.1 LCD控制器/驱动器功能14.2.2 LCD控制与模式寄存器14.2.3 LCD显示内存14.2.4 LCD操作软件例程14.3 LCD端口功能14.4 LCD与端口模式混合应用实例??第15章 A/D转换器?15.1 概述15.2 A/D转换操作15.2.1 A/D转换15.2.2 A/D中断15.2.3 A/D量程15.2.4 A/D电流源15.2.5 A/D输入端与多路切换15.2.6 A/D接地与降噪15.2.7 A/D输入与输出引脚15.3 A/D控制寄存器??第16章 其他模块16.1 晶体振荡器16.2 上电电路16.3 晶振缓冲输出??附录A 外围模块地址分配?附录B 指令集描述?B1 指令汇总B2 指令格式B3 不增加ROM开销的指令模拟B4 指令说明B5 用几条指令模拟的宏指令??附录C EPROM编程?C1 EPROM操作C2 快速编程算法C3 通过串行数据链路应用\"JTAG\"特性的EPROM模块编程C4 通过微控制器软件实现对EPROM模块编程??附录D MSP430系列单片机参数表?附录E MSP430系列单片机产品编码?附录F MSP430系列单片机封装形式?
上传时间: 2014-05-07
上传用户:lwq11
EZ-USB FX系列单片机USB外围设备设计与应用:PART 1 USB的基本概念第1章 USB的基本特性1.1 USB简介21.2 USB的发展历程31.2.1 USB 1.131.2.2 USB 2.041.2.3 USB与IEEE 1394的比较41.3 USB基本架构与总线架构61.4 USB的总线结构81.5 USB数据流的模式与管线的概念91.6 USB硬件规范101.6.1 USB的硬件特性111.6.2 USB接口的电气特性121.6.3USB的电源管理141.7 USB的编码方式141.8 结论161.9 问题与讨论16第2章 USB通信协议2.1 USB通信协议172.2 USB封包中的数据域类型182.2.1 数据域位的格式182.3 封包格式192.4 USB传输的类型232.4.1 控制传输242.4.2 中断传输292.4.3 批量传输292.4.4 等时传输292.5 USB数据交换格式302.6 USB描述符342.7 USB设备请求422.8 USB设备群组442.9 结论462.10 问题与讨论46第3章 设备列举3.1注册表编辑器473.2设备列举的步骤493.3设备列举步骤的实现--使用CATC分析工具513.4结论613.5问题与讨论61第4章 USB芯片与EZUSB4.1USB芯片的简介624.2USB接口芯片644.2.1Philips接口芯片644.2.2National Semiconductor接口芯片664.3内含USB单元的微处理器684.3.1Motorola694.3.2Microchip694.3.3SIEMENS704.3.4Cypress714.4USB芯片总揽介绍734.5USB芯片的选择与评估744.6问题与讨论80第5章 设备与驱动程序5.1阶层式的驱动程序815.2主机的驱动程序835.3驱动程序的选择865.4结论865.5问题与讨论87第6章 HID群组6.1HID简介886.2HID群组的传输速率886.3HID描述符906.3.1报告描述符936.3.2主要 main 项目类型966.3.3整体 global 项目卷标976.3.4区域 local 项目卷标986.3.5简易的报告描述符996.3.6Descriptor Tool 描述符工具 1006.3.7兼容测试程序1016.4HID设备的基本请求1026.5Windows通信程序1036.6问题与讨论106PART 2 硬件技术篇第7章 EZUSB FX简介7.1简介1097.2EZUSB FX硬件框图1097.3封包与PID码1117.4主机是个主控者1137.4.1从主机接收数据1137.4.2传送数据至主机1137.5USB方向1137.6帧1147.7EZUSB FX传输类型1147.7.1批量传输1147.7.2中断传输1147.7.3等时传输1157.7.4控制传输1157.8设备列举1167.9USB核心1167.10EZUSB FX单片机1177.11重新设备列举1177.12EZUSB FX端点1187.12.1EZUSB FX批量端点1187.12.2EZUSB FX控制端点01187.12.3EZUSB FX中断端点1197.12.4EZUSB FX等时端点1197.13快速传送模式1197.14中断1207.15重置与电源管理1207.16EZUSB 2100系列1207.17FX系列--从FIFO1227.18FX系列--GPIF 通用型可程序化的接口 1227.19AN2122/26各种特性的摘要1227.20修订ID1237.21引脚描述123第8章 EZUSB FX CPU8.1简介1308.28051增强模式1308.3EZUSB FX所增强的部分1318.4EZUSB FX寄存器接口1318.5EZUSB FX内部RAM1318.6I/O端口1328.7中断1328.8电源控制1338.9特殊功能寄存器 SFR 1348.10内部总线1358.11重置136第9章 EZUSB FX内存9.1简介1379.28051内存1389.3扩充的EZUSB FX内存1399.4CS#与OE#信号1409.5EZUSB FX ROM版本141第10章 EZUSB FX输入/输出端口10.1简介14310.2I/O端口14310.3EZUSB输入/输出端口寄存器14610.3.1端口配置寄存器14710.3.2I/O端口寄存器14710.4EZUSB FX输入/输出端口寄存器14910.5EZUSB FX端口配置表15110.6I2C控制器15610.78051 I2C控制器15610.8控制位15810.8.1START位15810.8.2STOP位15810.8.3LASTRD位15810.9状态位15910.9.1DONE位15910.9.2ACK位15910.9.3BERR位15910.9.4ID1, ID015910.10送出 WRITE I2C数据16010.11接收 READ I2C数据16010.12I2C激活加载器16010.13SFR寻址 FX 16210.14端口A~E的SFR控制165第11章 EZUSB FX设备列举与重新设备列举11.1简介16711.2预设的USB设备16911.3USB核心对于EP0设备请求的响应17011.4固件下载17111.5设备列举模式17211.6没有存在EEPROM17311.7存在着EEPROM, 第一个字节是0xB0 0xB4, FX系列11.8存在着EEPROM, 第一个字节是0xB2 0xB6, FX系列11.9配置字节0,FX系列17711.10重新设备列举 ReNumerationTM 17811.11多重重新设备列举 ReNumerationTM 17911.12预设描述符179第12章 EZUSB FX批量传输12.1简介18812.2批量输入传输18912.3中断传输19112.4EZUSB FX批量IN的例子19112.5批量OUT传输19212.6端点对19412.7IN端点对的状态19412.8OUT端点对的状态19512.9使用批量缓冲区内存19512.10Data Toggle控制19612.11轮询的批量传输的范例19712.12设备列举说明19912.13批量端点中断19912.14中断批量传输的范例20112.15设备列举说明20512.16自动指针器205第13章 EZUSB控制端点013.1简介20913.2控制端点EP021013.3USB请求21213.3.1取得状态 Get_Status 21413.3.2设置特性(Set_Feature)21713.3.3清除特性(Clear_Feature)21813.3.4取得描述符(Get_Descriptor)21913.3.5设置描述符(Set Descriptor)22313.3.6设置配置(Set_Configuration)22513.3.7取得配置(Get_Configuration)22513.3.8设置接口(Set_Interface)22513.3.9取得接口(Get_Interface)22613.3.10设置地址(Set_Address)22713.3.11同步帧22713.3.12固件加载228第14章 EZUSB FX等时传输14.1简介22914.2等时IN传输23014.2.1初始化设置23014.2.2IN数据传输23014.3等时OUT传输23114.3.1初始化设置23114.3.2数据传输23214.4设置等时FIFO的大小23214.5等时传输速度23414.5.1EZUSB 2100系列23414.5.2EZUSB FX系列23514.6快速传输 仅存于2100系列 23614.6.1快速写入23614.6.2快速读取23714.7快速传输的时序 仅存于2100系列 23714.7.1快速写入波形23814.7.2快速读取波形23914.8快速传输速度(仅存于2100系列)23914.9其余的等时寄存器24014.9.1除能等时寄存器24014.9.20字节计数位24114.10以无数据来响应等时IN令牌24214.11使用等时FIFO242第15章 EZUSB FX中断15.1简介24315.2USB核心中断24415.3唤醒中断24415.4USB中断信号源24515.5SUTOK与SUDAV中断24815.6SOF中断24915.7中止 suspend 中断24915.8USB重置中断24915.9批量端点中断25015.10USB自动向量25015.11USB自动向量译码25115.12I2C中断25215.13IN批量NAK中断 仅存于AN2122/26与FX系列 25315.14I2C STOP反相中断 仅存于AN2122/26与FX系列 25415.15从FIFO中断 INT4 255第16章 EZUSB FX重置16.1简介25716.2EZUSB FX打开电源重置 POR 25716.38051重置的释放25916.3.1RAM的下载26016.3.2下载EEPROM26016.3.3外部ROM26016.48051重置所产生的影响26016.5USB总线重置26116.6EZUSB脱离26216.7各种重置状态的总结263第17章 EZUSB FX电源管理17.1简介26517.2中止 suspend 26617.3回复 resume 26717.4远程唤醒 remote wakeup 269第18章 EZUSB FX系统18.1简介27118.2DMA寄存器描述27218.2.1来源. 目的. 传输长度地址寄存器27218.2.2DMA起始与状态寄存器27518.2.3DMA同步突发使能寄存器27518.2.4虚拟寄存器27818.3RD/FRD与WR/FWR DMA闪控的选择27818.4DMA闪控波形与延伸位的交互影响27918.4.1DMA外部写入27918.4.2DMA外部读取280第19章 EZUSB FX寄存器19.1简介28219.2批量数据缓冲区寄存器28319.3等时数据FIFO寄存器28419.4等时字节计数寄存器28519.5CPU寄存器28719.6I/O端口配置寄存器28819.7I/O端口A~C输入/输出寄存器28919.8230 Kbaud UART操作--AN2122/26寄存器29119.9等时控制/状态寄存器29119.10I2C寄存器29219.11中断29419.12端点0控制与状态寄存器29919.13端点1~7的控制与状态寄存器30019.14整体USB寄存器30519.15快速传输30919.16SETUP数据31119.17等时FIFO的容量大小31119.18通用I/F中断使能31219.19通用中断请求31219.20输入/输出端口寄存器D与E31319.20.1端口D输出31319.20.2输入端口D脚位31319.20.3端口D输出使能31319.20.4端口E输出31319.20.5输入端口E脚位31419.20.6端口E输出使能31419.21端口设置31419.22接口配置31419.23端口A与端口C切换配置31619.23.1端口A切换配置#231619.23.2端口C切换配置#231719.24DMA寄存器31919.24.1来源. 目的. 传输长度地址寄存器31919.24.2DMA起始与状态寄存器32019.24.3DMA同步突发使能寄存器32019.24.4选择8051 A/D总线作为外部FIFO321PART 3 固件技术篇第20章 EZUSB FX固件架构与函数库20.1固件架构总览32320.2固件架构的建立32520.3固件架构的副函数钩子32520.3.1工作分配器32620.3.2设备请求 device request 32620.3.3USB中断服务例程32920.4固件架构整体变量33220.5描述符表33320.5.1设备描述符33320.5.2配置描述符33420.5.3接口描述符33420.5.4端点描述符33520.5.5字符串描述符33520.5.6群组描述符33520.6EZUSB FX固件的函数库33620.6.1包含文件 *.H 33620.6.2子程序33620.6.3整体变量33820.7固件架构的原始程序代码338第21章 EZUSB FX固件范例程序21.1范例程序的简介34621.2外围I/O测试程序34721.3端点对, EP_PAIR范例35221.4批量测试, BulkTest范例36221.5等时传输, ISOstrm范例36821.6问题与讨论373PART 4 实验篇第22章 EZUSB FX仿真器22?1简介37522?2所需的工具37622?3EZUSB FX框图37722.4EZUSB最终版本的系统框图37822?5第一次下载程序37822.6EZUSB FX开发系统框图37922.7设置开发环境38022.8EZUSB FX开发工具组的内容38122.9EZUSB FX开发工具组软件38222.9.1初步安装程序38222.9.2确认主机 个人计算机 是否支持USB38222.10安装EZUSB控制平台. 驱动程序以及文件38322.11EZUSB FX开发电路板38522.11.1简介38522.11.2开发电路板的浏览38522.11.3所使用的8051资源38622.11.4详细电路38622.11.5LED的显示38722.11.6Jumper38722.11.7连接器39122.11.8内存映象图39222.11.9PLD信号39422.11.10PLD源文件文件39522.11.11雏形板的扩充连接器P1~P639722.11.12Philips PCF8574 I/O扩充IC40022.12DMA USB FX I/O LAB开发工具介绍40122.12.1USBFX简介40122.12.2USBFX及外围整体环境介绍40322?12?3USBFX与PC连接软件介绍40422.12.4USBFX硬件功能介绍404第23章 LED显示器输出实验23.1硬件设计与基本概念40923.2固件设计41023.3.1固件架构文件FW.C41123.3.2描述符文件DESCR.A5141223.3.3外围接口文件PERIPH.C41723.4固件程序代码的编译与链接42123.5Windows程序, VB设计42323.6INF文件的编写设计42423.7结论42623.8问题与讨论427第24章 七段显示器与键盘的输入/输出实验24.1硬件设计与基本概念42824.2固件设计43124.2.1七段显示器43124.2.24×4键盘扫描43324.3固件程序代码的编译与链接43424.4Windows程序, VB设计43624.5问题与讨论437第25章 LCD文字型液晶显示器输出实验25.1硬件设计与基本概念43825.1.1液晶显示器LCD43825.2固件设计45225.3固件程序代码的编译与链接45625.4Windows程序, VB设计45725.5问题与讨论458第26章 LED点阵输出实验26.1硬件设计与基本概念45926.2固件设计46326.3固件程序代码的编译与链接46326.4Windows程序, VB设计46526.5问题与讨论465第27章 步进电机输出实验27.1硬件设计与基本概念46627.1.11相激磁46727.1.22相激磁46727.1.31-2相激磁46827?1?4PMM8713介绍46927.2固件设计47327.3固件程序代码的编译与链接47427.4Windows程序, VB设计47627.5问题与讨论477第28章 I2C接口输入/输出实验28.1硬件设计与基本概念47828.2固件设计48128.3固件程序代码的编译与链接48328.4Windows程序, VB设计48428.5问题与讨论485第29章 A/D转换器与D/A转换器的输入/输出实验29.1硬件设计与基本概念48629.1.1A/D转换器48629.1.2D/A转换器49029.2固件设计49329.2.1A/D转换器的固件设计49329.2.2D/A转换器的固件设计49629.3固件程序代码的编译与链接49729.4Windows程序, VB设计49829.5问题与讨论499第30章 LCG绘图型液晶显示器输出实验30.1硬件设计与基本概念50030.1.1绘图型LCD50030.1.2绘图型LCD控制指令集50330.1.3绘图型LCD读取与写入时序图50530.2固件设计50630.2.1LCG驱动程序50630.2.2USB固件码51330.3固件程序代码的编译与链接51630.4Windows程序, VB设计51730.5问题与讨论518附录A Cypress控制平台的操作A.1EZUSB控制平台总览519A.2主画面520A.3热插拔新的USB设备521A.4各种工具栏的使用524A.5故障排除526A.6控制平台的进阶操作527A.7测试Unary Op工具栏上的按钮功能528A.8测试制造商请求的工具栏 2100 系列的开发电路板 529A.9测试等时传输工具栏532A.10测试批量传输工具栏533A.11测试重置管线工具栏535A.12测试设置接口工具栏537A.13测试制造商请求工具栏 FX系列开发电路板A.14执行Get Device Descriptor 操作来验证开发板的功能是否正确539A.15从EZUSB控制平台中, 加载dev_io的范例并且加以执行540A.16从Keil侦错应用程序中, 加载dev_io范例程序代码, 然后再加以执行542A.17将dev_io 目标文件移开, 且使用Keil IDE 集成开发环境 来重建545A.18在侦错器下执行dev_io目标文件, 并且使用具有侦错能力的IDE547A.19在EZUSB控制平台下, 执行ep_pair目标文件A.20如何修改fw范例, 并在开发电路板上产生等时传输550附录BEZUSB 2100系列及EZUSB FX系列引脚表B.1EZUSB 2100系列引脚表555B?2EZUSB FX系列引脚图表561附录C EZUSB FX寄存器总览附录D EEPROM烧录方式
上传时间: 2013-11-21
上传用户:努力努力再努力
含原理图+电路图+程序的波形发生器:在工作中,我们常常会用到波形发生器,它是使用频度很高的电子仪器。现在的波形发生器都采用单片机来构成。单片机波形发生器是以单片机核心,配相应的外围电路和功能软件,能实现各种波形发生的应用系统,它由硬件部分和软件部分组成,硬件是系统的基础,软件则是在硬件的基础上,对其合理的调配和使用,从而完成波形发生的任务。 波形发生器的技术指标:(1) 波形类型:方型、正弦波、三角波、锯齿波;(2) 幅值电压:1V、2V、3V、4V、5V;(3) 频率值:10HZ、20HZ、50HZ、100HZ、200HZ、500HZ、1KHZ;(4) 输出极性:双极性操作设计1、 机器通电后,系统进行初始化,LED在面板上显示6个0,表示系统处于初始状态,等待用户输入设置命令,此时,无任何波形信号输出。2、 用户按下“F”、“V”、“W”,可以分别进入频率,幅值波形设置,使系统进入设置状态,相应的数码管显示“一”,此时,按其它键,无效;3、 在进入某一设置状态后,输入0~9等数字键,(数字键仅在设置状态时,有效)为欲输出的波形设置相应参数,LED将参数显示在面板上;4、 如果在设置中,要改变已设定的参数,可按下“CL”键,清除所有已设定参数,系统恢复初始状态,LED显示6个0,等待重新输入命令;5、 当必要的参数设定完毕后,所有参数显示于LED上,用户按下“EN”键,系统会将各波形参数传递到波形产生模块中,以便控制波形发生,实现不同频率,不同电压幅值,不同类型波形的输出;6、 用户按下“EN”键后,波形发生器开始输出满足参数的波形信号,面板上相应类型的运行指示灯闪烁,表示波形正在输出,LED显示波形类型编号,频率值、电压幅值等波形参数;7、 波形发生器在输出信号时,按下任意一个键,就停止波形信号输出,等待重新设置参数,设置过程如上所述,如果不改变参数,可按下“EN”键,继续输出原波形信号;8、 要停止波形发生器的使用,可按下复位按钮,将系统复位,然后关闭电源。硬件组成部分通过综合比较,决定选用获得广泛应用,性能价格高的常用芯片来构成硬件电路。单片机采用MCS-51系列的89C51(一块),74LS244和74LS373(各一块),反相驱动器 ULN2803A(一块),运算放大器 LM324(一块) 波形发生器的硬件电路由单片机、键盘显示器接口电路、波形转换(D/ A)电路和电源线路等四部分构成。1.单片机电路功能:形成扫描码,键值识别,键功能处理,完成参数设置;形成显示段码,向LED显示接口电路输出;产生定时中断;形成波形的数字编码,并输出到D/A接口电路;如电路原理图所示: 89C51的P0口和P2口作为扩展I/O口,与8255、0832、74LS373相连接,可寻址片外的寄存器。单片机寻址外设,采用存储器映像方式,外部接口芯片与内部存储器统一编址,89C51提供16根地址线P0(分时复用)和P2,P2口提供高8位地址线,P0口提供低8位地址线。P0口同时还要负责与8255,0832的数据传递。P2.7是8255的片选信号,P2.6是0832(1)的片选,P2.5是0832(2)的片选,低电平有效,P0.0、P0.1经过74LS373锁存后,送到8255的A1、A2作,片内A口,B口,C口,控制口等寄存器的字选。89C51的P1口的低4位连接4只发光三极管,作为波形类型指示灯,表示正在输出的波形是什么类型。单片机89C51内部有两个定时器/计数器,在波形发生器中使用T0作为中断源。不同的频率值对应不同的定时初值,定时器的溢出信号作为中断请求。控制定时器中断的特殊功能寄存器设置如下:定时控制寄存器TCON=(00010000)工作方式选择寄存器(TMOD)=(00000000)中断允许控制寄存器(IE)=(10000010)2、键盘显示器接口电路功能:驱动6位数码管动态显示; 提供响应界面; 扫面键盘; 提供输入按键。由并口芯片8255,锁存器74LS273,74LS244,反向驱动器ULN2803A,6位共阴极数码管(LED)和4×4行列式键盘组成。8255的C口作为键盘的I/O接口,C口的低4位输出到扫描码,高4位作为输入行状态,按键的分布如图所示。8255的A口作为LED段码输出口,与74LS244相连接,B口作为LED的位选信号输出口,与ULN2803A相连接。8255内部的4个寄存器地址分配如下:控制口:7FFFH , A口:7FFFCH , B口:7FFDH , C口:7FFEH 3、D/A电路功能:将波形样值的数字编码转换成模拟值;完成单极性向双极性的波形输出;构成由两片0832和一块LM324运放组成。0832(1)是参考电压提供者,单片机向0832(1)内的锁存器送数字编码,不同的编码会产生不同的输出值,在本发生器中,可输出1V、2V、3V、4V、5V等五个模拟值,这些值作为0832(2)的参考电压,使0832(2)输出波形信号时,其幅度是可调的。0832(2)用于产生各种波形信号,单片机在波形产生程序的控制下,生成波形样值编码,并送到0832(2)中的锁存器,经过D/A转换,得到波形的模拟样值点,假如N个点就构成波形的一个周期,那么0832(2)输出N个样值点后,样值点形成运动轨迹,就是波形信号的一个周期。重复输出N个点后,由此成第二个周期,第三个周期……。这样0832(2)就能连续的输出周期变化的波形信号。运放A1是直流放大器,运放A2是单极性电压放大器,运放A3是双极性驱动放大器,使波形信号能带得起负载。地址分配:0832(1):DFFFH ,0832(2):BFFFH4、电源电路:功能:为波形发生器提供直流能量;构成由变压器、整流硅堆,稳压块7805组成。220V的交流电,经过开关,保险管(1.5A/250V),到变压器降压,由220V降为10V,通过硅堆将交流电变成直流电,对于谐波,用4700μF的电解电容给予滤除。为保证直流电压稳定,使用7805进行稳压。最后,+5V电源配送到各用电负载。
上传时间: 2013-11-08
上传用户:685
介绍用PIC16F84单片机制作的电子密码锁。PIC16F84单片机共18个引脚,13个可用I/O接口。芯片内有1K×14的FLASHROM程序存储器,36×8的静态RAM的通用寄存器,64×8的EEPROM的数据存储器,8级深度的硬堆栈。 用PIC单片机设计的电子密码锁微芯公司生产的PIC8位COMS单片机,采用类RISC指令集和哈弗总线结构,以及先进的流水线时序,与传统51单片机相比其在速度和性能方面更具优越性和先进性。PIC单片机的另一个优点是片上硬件资源丰富,集成常见的EPROM、DAC、PWM以及看门狗电路。这使得硬件电路的设计更加简单,节约设计成本,提高整机性能。因此PIC单片机已成为产品开发,尤其是产品设计和研制阶段的首选控制器。本文介绍用PIC16F84单片机制作的电子密码锁。PIC16F84单片机共18个引脚,13个可用I/O接口。芯片内有1K×14的FLASHROM程序存储器,36×8的静态RAM的通用寄存器,64×8的EEPROM的数据存储器,8级深度的硬堆栈。硬件设计 电路原理见图1。Xx8位数据线接4x4键盘矩阵电路,面板布局见表1,A、B、C、D为备用功能键。RA0、RA7输出4组编码二进制数据,经74LS139译码后输出逐行扫描信号,送RB4-RB7列信号输入端。余下半个139译码器动扬声器。RB2接中功率三极管基极,驱动继电器动作。有效密码长度为4位,根据实际情况,可通过修改源程序增加密码位数。产品初始密码为3345,这是一随机数,无特殊意义,目的是为防止被套解。用户可按*号键修改密码,按#号键结束。输入密码并按#号确认之后,脚输出RB2脚输出高电平,继电器闭合,执行一次开锁动作。 若用户输入的密码正确,扬声器发出一声稍长的“滴”提示声,若输入的密码与上次修改的不符,则发出短促的“滴”声。连续3次输入密码错误之后,程序锁死,扬声器报警。直到CPU被复位或从新上电。软件设计 软件流程图见图3。CPU上电或复位之后将最近一次修改并保存到EEPROM的密码读出,最为参照密匙。然后等待用户输入开锁密码。若5分钟以内没有接受到用户的任何输入,CPU自动转入掉电模式,用户输入任意值可唤醒CPU。每次修改密码之后,CPU将新的密码存入内部4个连续的EEPROM单元,掉电后该数据任有效。每执行一次开锁指令,CPU将当前输入密码与该值比较,看是否真确,并给出相应的提示和控制。布 局 所有元件均使用SMD表贴封装,缩小体积,便于产品安装,60X60双面PCB板,顶层是一体化输入键盘,底层是元件层。成型后的产品体积小巧,能很方便的嵌入防盗铁门、保险箱柜。
上传时间: 2013-10-31
上传用户:uuuuuuu
串行编程器源程序(Keil C语言)//FID=01:AT89C2051系列编程器//实现编程的读,写,擦等细节//AT89C2051的特殊处:给XTAL一个脉冲,地址计数加1;P1的引脚排列与AT89C51相反,需要用函数转换#include <e51pro.h> #define C2051_P3_7 P1_0#define C2051_P1 P0//注意引脚排列相反#define C2051_P3_0 P1_1#define C2051_P3_1 P1_2#define C2051_XTAL P1_4#define C2051_P3_2 P1_5#define C2051_P3_3 P1_6#define C2051_P3_4 P1_7#define C2051_P3_5 P3_5 void InitPro01()//编程前的准备工作{ SetVpp0V(); P0=0xff; P1=0xff; C2051_P3_5=1; C2051_XTAL=0; Delay_ms(20); nAddress=0x0000; SetVpp5V();} void ProOver01()//编程结束后的工作,设置合适的引脚电平{ SetVpp5V(); P0=0xff; P1=0xff; C2051_P3_5=1; C2051_XTAL=1;} BYTE GetData()//从P0口获得数据{ B_0=P0_7; B_1=P0_6; B_2=P0_5; B_3=P0_4; B_4=P0_3; B_5=P0_2; B_6=P0_1; B_7=P0_0; return B;} void SetData(BYTE DataByte)//转换并设置P0口的数据{ B=DataByte; P0_0=B_7; P0_1=B_6; P0_2=B_5; P0_3=B_4; P0_4=B_3; P0_5=B_2; P0_6=B_1; P0_7=B_0;} void ReadSign01()//读特征字{ InitPro01(); Delay_ms(1);//----------------------------------------------------------------------------- //根据器件的DataSheet,设置相应的编程控制信号 C2051_P3_3=0; C2051_P3_4=0; C2051_P3_5=0; C2051_P3_7=0; Delay_ms(20); ComBuf[2]=GetData(); C2051_XTAL=1; C2051_XTAL=0; Delay_us(20); ComBuf[3]=GetData(); ComBuf[4]=0xff;//----------------------------------------------------------------------------- ProOver01();} void Erase01()//擦除器件{ InitPro01();//----------------------------------------------------------------------------- //根据器件的DataSheet,设置相应的编程控制信号 C2051_P3_3=1; C2051_P3_4=0; C2051_P3_5=0; C2051_P3_7=0; Delay_ms(1); SetVpp12V(); Delay_ms(1); C2051_P3_2=0; Delay_ms(10); C2051_P3_2=1; Delay_ms(1);//----------------------------------------------------------------------------- ProOver01();} BOOL Write01(BYTE Data)//写器件{//----------------------------------------------------------------------------- //根据器件的DataSheet,设置相应的编程控制信号 //写一个单元 C2051_P3_3=0; C2051_P3_4=1; C2051_P3_5=1; C2051_P3_7=1; SetData(Data); SetVpp12V(); Delay_us(20); C2051_P3_2=0; Delay_us(20); C2051_P3_2=1; Delay_us(20); SetVpp5V(); Delay_us(20); C2051_P3_4=0; Delay_ms(2); nTimeOut=0; P0=0xff; nTimeOut=0; while(!GetData()==Data)//效验:循环读,直到读出与写入的数相同 { nTimeOut++; if(nTimeOut>1000)//超时了 { return 0; } } C2051_XTAL=1; C2051_XTAL=0;//一个脉冲指向下一个单元//----------------------------------------------------------------------------- return 1;} BYTE Read01()//读器件{ BYTE Data;//----------------------------------------------------------------------------- //根据器件的DataSheet,设置相应的编程控制信号 //读一个单元 C2051_P3_3=0; C2051_P3_4=0; C2051_P3_5=1; C2051_P3_7=1; Data=GetData(); C2051_XTAL=1; C2051_XTAL=0;//一个脉冲指向下一个单元//----------------------------------------------------------------------------- return Data;} void Lock01()//写锁定位{ InitPro01();//先设置成编程状态//----------------------------------------------------------------------------- //根据器件的DataSheet,设置相应的编程控制信号 if(ComBuf[2]>=1)//ComBuf[2]为锁定位 { C2051_P3_3=1; C2051_P3_4=1; C2051_P3_5=1; C2051_P3_7=1; Delay_us(20); SetVpp12V(); Delay_us(20); C2051_P3_2=0; Delay_us(20); C2051_P3_2=1; Delay_us(20); SetVpp5V(); } if(ComBuf[2]>=2) { C2051_P3_3=1; C2051_P3_4=1; C2051_P3_5=0; C2051_P3_7=0; Delay_us(20); SetVpp12V(); Delay_us(20); C2051_P3_2=0; Delay_us(20); C2051_P3_2=1; Delay_us(20); SetVpp5V(); }//----------------------------------------------------------------------------- ProOver01();} void PreparePro01()//设置pw中的函数指针,让主程序可以调用上面的函数{ pw.fpInitPro=InitPro01; pw.fpReadSign=ReadSign01; pw.fpErase=Erase01; pw.fpWrite=Write01; pw.fpRead=Read01; pw.fpLock=Lock01; pw.fpProOver=ProOver01;}
上传时间: 2013-11-12
上传用户:gut1234567
单片机应用技术选编10 目录 第一章 专题论述1.1 嵌入式系统的技术发展和我们的机遇(2)1.2 一种新的电路设计和实现方法——进化硬件(8)1.3 从8/16位机到32位机的系统设计(13)1.4 混合SoC设计(18)1.5 AT24系列存储器数据串并转换接口的IP核设计(23)1.6 低能耗嵌入式系统的设计(28)1.7 嵌入式应用中的零功耗系统设计(31)1.8 数字指纹协议的研究与发展(37)1.9 指纹识别控制系统设计(45)1.10 条形码的计算机编码与识别(48)1.11 蓝牙技术综述(54)1.12 蓝牙通信过程解析与研究(60)1.13 蓝牙模块基带电路的接口技术(65)1.14 蓝牙HCI层数据通信的实现(72)1.15 蓝牙技术硬件实现模式分析(77)1.16 Bluetooth技术与相关器件(83)1.17 基于蓝牙技术的无线收发芯片nRF401(88)1.18 蓝牙收发芯片RF2968的原理及应用(93)1.19 nRFTM系列单片机无线收发器的应用设计(99)1.20 基于蓝牙技术的家庭网络(106) 第二章 综合应用2.1 嵌入式系统的超时控制及其应用(114)2.2 多路读写的SDRAM接口设计(118)2.3 SDRAM视频存储控制器的设计与实现(123)2.4 集成多路模拟开关的应用技巧(129)2.5 合理选择DCDC转换器(133)2.6 单片机定时器中断时间误差的分析及补偿(137)2.7 单片机无线串行接口电路设计(140)2.8 单片机控制Modem的两种硬件接口方法(143)2.9 使用PWM得到精密的输出电压(147)2.10 测控系统前向通道的误差分析及标定(150)2.11 如何认识和提高ADC的精度(155)2.12 提高ADC分辨率的硬件和软件措施(160)2.13 智能温度传感器的发展趋势(165)2.14 温度传感器的选择策略(169)2.15 单线数字温度传感器DS18B20数据校验与纠错(174)2.16 TMP03/04型数字温度传感器的工作原理(180)2.17 TMP03/04型数字温度传感器的应用(184)2.18 谐振式水晶温度传感器的现状和发展预测(189)2.19 石英晶体温度传感器的应用(194)2.20 无线数字温度传感器的设计(199)2.21 液晶屏温度响应特性及其温度控制(203)2.22 CPU卡的接口特性、传输协议与读写程序设计(209)2.23 一种基于铁电存储器的双机串行通信技术(215) 第三章 软件技术3.1 面向应用的嵌入式操作系统(222)3.2 嵌入式实时操作系统及其应用(228)3.3 Windows CE在嵌入式工业控制系统中的应用思考(234)3.4 简易非抢先式实时多任务操作系统的设计与应用(239)3.5 单片机程序设计中运用事件驱动机制(248)3.6 实时操作系统RTLINUX的原理及应用(253)3.7 RTLinux的实时机制分析(256)3.8 基于RTLinux系统的设备驱动程序开发与应用(261)3.9 嵌入式实时操作系统μC/OSⅡ及其应用(265)3.10 在MOTOROLA 568XX系列DSP上运行μC/OSⅡ(267)3.11 Franklin C51浮点数与A51浮点数的相互转换、传递及其在混合编程中的应用(272) 第四章 网络、通信与数据传输4.1 嵌入式系统以太网接口的设计(280)4.2 以太网在网络控制系统中的应用与发展趋势(285)4.3 IPv4向IPv6的过渡(291)4.4 在嵌入式网络应用中实现TCP/IP协议(295)4.5 一种以太网与8位单片机的连接方法(300)4.6 RS485总线通信避障及其多主发送的研究(305)4.7 RS422/RS485网络的无极性接线设计(310)4.8 RS485与USB接口转换卡的设计与实现(315)4.9 低压电力线载波数据通信及其应用前景(320)4.10 基于LM1893的电力线载波通信系统设计(327)4.11 家庭无线信息网络解决方案(331)4.12 基于GSM短消息接口的MC3一体化遥测系统(334)4.13 基于短消息的自动抄表系统(337) 第五章 新器件与新技术5.1 ARM核嵌入式系统的开发平台ADS(344)5.2 大容量Flash型AT91系列ARM核微控制器(350)5.3 内嵌UHF ASK/FSK发射器的8位微控制器(357)5.4 专用单片机C5042E在SPWM技术中的编程技巧(361)5.5 新型高精度时钟芯片RTC4553(367)5.6 A/D芯片TLC2543与Neuron芯片的接口应用(372)5.7 一种新型传感器接口IC(376)5.8 新型CMOS图像传感器及其应用(380)5.9 GMS97C2051与ISD2560组成的小型语音系统(385)5.10 73M2901芯片在嵌入式Modem中的应用(389)5.11 电能计量芯片组AT73C500和AT73C501及其应用(395) 第六章 总线技术6.1 PCI总线及其接口芯片的应用(406)6.2 实现RS485/RS422和CAN转换——总线网桥的构建(409)6.3 工控系统应用CAN总线的几种改进方法(413)6.4 快速和高可靠性的CAN网络模块ADAM?500/CAN(418)6.5 SJA1000在CAN总线系统节点的应用(422)6.6 用C167CR实现CAN总线通信(430)6.7 1?WIRE网络的特性与应用(436)6.8 基于TINI的一线制网络互连技术(441)6.9 单总线数字温度传感器的自动识别技术(445)6.10 TM卡信息纽扣在预付费水表中的应用(450)6.11 USB 2.0性能特点及其应用(455)6.12 USB总线协议信息包分析(459)6.13 USB设备的开发(463)6.14 嵌入式系统中USB总线驱动的开发及应用(467)6.15 USB接口单片机SL11R的特点及应用(475)6.16 USB接口器件PDIUSBD12的接口应用设计(479)6.17 USB 2.0控制器CY7C68013特点与应用(486)6.18 基于EZ?USB的数据采集与控制(491)6.19 基于USB接口的IC卡读写器的设计(498)6.20 IEEE 1394总线技术与应用(501) 第七章 可靠性及安全性技术7.1 单片机复位电路的可靠性分析(508)7.2 提高移位寄存器接口电路可靠性的措施(515)7.3 单片机嵌入式系统软件容错设计(518)7.4 键盘信息泄漏与防泄漏键盘设计(526)7.5 USB安全钥功能扩展与优化设计(532)7.6 单片机多机冗余设计及控制模块的VHDL语言描述(540)7.7 一种快速可靠的串行flash容错系统的设计与实现(545)7.8 射频电路印刷电路板的电磁兼容性设计(550)7.9 去耦电容在PCB板设计中的应用(553)7.10 密码访问器件X76F100在单片机系统中的应用(560)7.11 计算机的电磁干扰研究(566)7.12 EMI和屏蔽(一)(573)7.13 EMI和屏蔽(二)(579)7.14 微机接口设计中的静电冲击(ESD)防护措施(585)7.15 单片机应用系统中去除工频干扰的快速实现(589)7.16 传输线路引起的数字信号畸变与抑制(593) 第八章 DSP及其应用技术8.1 TMS320VC5402电路设计中应注意的几个问题(600)8.2 DSP系统中的外部存储器设计(604)8.3 TMS320C24x的C语言与汇编语言的接口技术(610)8.4 DSP环境下C语言编程的优化实现(615)8.5 基于TMS320C6000高速算法的实现(619)8.6 TMS320F240串行外设接口及其应用(624)8.7 基于DSP的Modem及其驱动程序的设计与实现(631)8.8 W3100在DSP系统以太网接口中的应用(637)8.9 CAN总线控制器与DSP的接口(643)8.10 基于DSP的USB传输系统的实现(648) 第九章 HDL与可编程器件技术9.1 谈谈EDA的硬件描述语言(654)9.2 基于VHDL语言的FPGA设计(657)9.3 VHDL的设计特点与应用研究(662)9.4 单片机应用系统的CPLD应用设计(668)9.5 用CPLD实现单片机与ISA总线接口的并行通信(674)9.6 FPGA实现PCI总线接口技术(679)9.7 用FPGS实现DES算法的密钥简化算法(685)9.8 可编程模拟器件原理与开发(690)9.9 数字/模拟ISP技术及其EDA工具(695)9.10 可编程模拟器件ispPAC20在电路设计中的应用(698)9.11 基于FPGA的I2C总线接口实现方法(701)9.12 基于CPLD的串并转换和高速USB通信设计(705)9.13 用HDL语言实现循环冗余校验(712)9.14 利用单片机和CPLD实现直接数字频率合成(DDS)(717)9.15 基于Verilog?HDL的轴承振动噪声电压峰值检测(722) 第十章 综合应用10.1 AVR高速单片机LED显示系统(728)10.2 基于ADμC812与SJA1000数据采集系统的设计(732)10.3 用AT89C2051设计的PC/AT键盘(736)10.4 利用89C2051实现POCSAG编码的方法(739)10.5 加载感应DAC的应用(741)10.6 利用MAX7219设计LED大屏幕基本显示模块(745)10.7 单片机用作通用红外遥控接收器的设计(751)10.8 红外遥控器软件解码及其应用(754) 第十一章 文章摘要 一、专题论述(758)1.1 与8051兼容的单片机的新发展(758)1.2 正在崛起的低功耗微处理器技术(758)1.3 低功耗电子系统设计的综合考虑(758)1.4 数字电路设计方案的比较与选择(758)1.5 单片机应用系统中数学协处理器的开发(758)1.6 实现基于IP核技术的SoC设计(758)1.7 基于知识产权的SoC关键技术与设计(759)1.8 基于IP核复用技术的SoC设计(759)1.9 将IP集成进SoC(759)1.10 模拟/混合电路SoC的设计难题(759)1.11 系统级可编程芯片(SOPC)设计思想与开发策略(759)1.12 基于SoC的PAGER控制芯片设计(759)1.13 一种高性能CMOS带隙电路的设计(759)1.14 基于结构的指纹分类技术(760)1.15 指纹识别的预处理组合算法(760)1.16 一种指纹识别的细节特征匹配的方法(760)1.17 指纹IC卡及其应用(760)1.18 人脸照片的特征提取与查询(760)1.19 一种快速、鲁棒的人脸检测方法(760)1.20 128条码的编码分析和识别算法(761)1.21 身份证号码快速识别系统(761)1.22 汉字识别技术的新方法及发展趋势(761)1.23 蓝牙技术及其应用展望(761)1.24 蓝牙技术浅析(761)1.25 蓝牙HCI USB传输层规范(761)1.26 蓝牙服务发现协议(SDP)的实现(761)1.27 蓝牙技术安全性解析(762)1.28 蓝牙技术及其应用(762)1.29 BluetoothASIC接口技术(762)1.30 RF CMOS蓝牙收发器的设计(一)(762)1.31 RF CMOS蓝牙收发器的设计(二)(762)1.32 单片蓝牙控制器AT76C551(762)1.33 设计RF CMOS蓝牙收发器(762)1.34 ROK 101 007/1蓝牙模块的特性与应用(763)1.35基于nRF401的PC机无线收发模块的设计(763)1.36 无线收发芯片nRF401在监测系统中的应用(763)1.37 基于射频收发芯片nRF401的计算机接口电路设计(763)1.38 采用nRF401实现单片机与PC机无线数据通信(763)1.39 基于射频收发芯片nRF403的无线接口电路设计(763)1.40 蓝牙局域网无线接入网关的研制(763)1.41 基于蓝牙的无线数据采集系统(764)1.42 安立蓝牙无线测试解决方案(764)1.43 嵌入式系统中的蓝牙电话应用规范的实现(764)1.44 蓝牙“三合一电话”的解决方案(764)1.45 用Bluetooth技术构建分布式污水处理控制系统(764)1.46 MPEG的发展动态及其未来预测(764)1.47 软件无线电的关键技术与未来展望(764)1.48 软件无线电与虚拟无线电(765)1.49 射频无线测控系统及其应用(765)1.50 一种新的感知工具——电子标记笔(765)1.51 智能住宅用户控制器设计(765)1.52 利用GPS对计算机实现精确授时(765)1.53 IP代理远程测控系统(765)1.54 曼彻斯特码编码与解码硬件实现(765)1.55 便携式设备中电源软开关设计的一种方法(766)1.56 便携式设备的电源方案设计(766)1.57 StrongARM及其嵌入式应用平台(766)1.58 嵌入式系统在光传输设备中的应用(766)1.59 光纤无源器件技术的发展方向(766) 二、 综合应用(767)2.1 数据存储技术的应用(767)2.2 SL11R单片机外部存储器扩展(767)2.3 构成大容量非易失性SRAM方法分析(767)2.4 一种专用高速硬盘存储设备的设计与实现(767)2.5 基于CDROM的嵌入式系统设计(767)2.6 串行E2PROM的应用设计与编程(767)2.7 利用UART扩展大容量具有SPI接口的快速串行E2PROM的方法(767)2.8 用单片机实现异步串行数据再生(768)2.9 非易失性数字性电位器与单片机的接口设计(768)2.10 数控电位器在频率可调信号源中的应用(768)2.11 单片机上一种新颖实用的ex函数计算方法(768)2.12 单片机系统设计的误区与对策(768)2.13 基于SystemC的嵌入式系统软硬件协同设计(768)2.14 一种基于JTAG TAP的嵌入式调试接口设计(769)2.15 工作频率可动态调整的单片机系统设计(769)2.16 嵌入式系统高效多串口中断源的实现(769)2.17 AVR单片机计时器的优化使用(769)2.18 可编程定时/计数器提高输出频率准确度方法(769)2.19 用插值调整法设计单片机串行口波特率(769)2.20 “频率准确度”自动校准(770)2.21 双时基频率校准电路(770)2.22 电压频率转换电路的动态特性分析及求解(770)2.23 单片机测控系统的低功耗设计(770)2.24 MCS96/196三字节浮点库(770)2.25 循环冗余校验方法研究(770)2.26 32位微处理器下伪SPI技术的研究与实现(770)2.27 智能仪表LED点阵显示模块的设计(771)2.28 点阵式图形VFD与单片机的硬件接口及编程技术(771)2.29 内置汉字字模的EPROM制作技术(771)2.30 利用VC++实现汉字字模的提取与小汉字库的生成(771)2.31 高分辨率电压与电流快速数据采集方法(771)2.32 单片机与数字温度传感器DS18B20的接口设计(771)2.33 新型温度传感器DS18B20高精度测温的实现(772)2.34 MAX6576/6577集成温度传感器(772)2.35 AD22105型低功耗可编程集成温度控制器(772)2.36 基于IEEE 1451.1的网络化智能传感器设计(772)2.37 数字式温度传感器与仪表的智能化设计(772)2.38 用单片机软件实现传感器温度误差补偿(772)2.39 Σ?Δ A/D转换器的原理及分析(772)2.40 一种提高A/D分辨率的信号调理电路设计(773)2.41 高精度数据转换器接口技术(773)2.42 高精度双积分A/D转换器与单片机接口的新方法(773)2.43 一种高速A/D与MCS51单片机的接口方法(773)2.44 基于串行FIFO双口RAM的高速A/D转换采集系统的设计(773)2.45 超高速数据采集系统的设计与实现(773)2.46 廉价隔离型高精度D/A转换器(774)2.47 智能卡及其应用技术研究(774)2.48 Jupiter GPS接收机数据的提取(774)2.49 基于单片机的脉冲频率的宽范围高精度测量(774)2.50 电源模块输入软启动电路的设计(774)2.51 不停车电子收费系统关键技术(774)2.52 一种直接采用计算机串行口控制步进电机的新方法(774)2.53 8051系列单片机通用鼠标接口程序设计(775)2.54 可编程ASIC与MCS51单片机接口设计及实现(775) 三、软件技术(776)3.1 无线信息设备的理想操作系统Symbian OS(776)3.2 TMS320C55x嵌入式实时多任务系统DSP/BIOS II(776)3.3 两种嵌入式操作系统的比较(776)3.4 用自由软件开发嵌入式应用(776)3.5 开放源代码软件的应用研究(776)3.6 清华嵌入式软件系统的解决方案(776)3.7 单片机应用程序的高级语言设计(777)3.8 基于RTX51的单片机软件设计(777)3.9 多网口通信在VXWORKS中的实现(777)3.10 嵌入式实时操作系统中实现MBUF(777)3.11 硬实时操作系统——RTLinux(777)3.12 Linux嵌入式系统的上层应用开发研究(777)3.13 嵌入式Linux内核下串行驱动程序的实现(777)3.14 嵌入式Linux的中断处理与实时调度的实现机制(778)3.15 基于Linux平台的应用研究(778)3.16 基于Linux的嵌入式系统开发(778)3.17 基于Linux的嵌入式系统设计与实现(778)3.18 基于RTLinux的实时控制系统(778)3.19 基于RTLinux的实时机器人控制器研究(778)3.20 嵌入式Linux系统在温室计算机控制中的应用(778)3.21 基于Linux的USB驱动程序实现(779)3.22 Linux环境下实现串口通信(779)3.23 Linux系统下RS485串行通信程序设计(779)3.24 Linux系统下蓝牙设备驱动程序研究和实现 (779)3.25 基于μCLinux和GPRS的无线数据通信系统(779)3.26 嵌入式Linux开发平台的USB主机接口设计(779)3.27 CAN通信卡的Linux设备驱动程序设计实现(779)3.28 μC/OSII实时操作系统内存管理的改进(780)3.29 μC/OSII在总线式数据采集系统中的应用(780)3.30 实时操作系统μC/OSII在MCF5272上的移植(780)3.31 μC/OSII在51XA上的移植应用(780)3.32 实时嵌入式内核在DSP上的移植实现(780)3.33 利用全局及外部变量实现C51无参数化调用A51函数(780)3.34 基于状态分析的键盘管理软件设计(780)3.35 PS/2接口C语言通信函数库设计(781)3.36 DS18B20接口的C语言程序设计(781)3.37 基于KeilC51的SLE4428 IC卡驱动程序设计(781)3.38 智能型并口用软件加密狗的设计(781)3.39 啤酒发酵控制器中的多任务分析与实现(781)3.40 CAN网络应用软件的设计与研究(781)3.41 USB软件系统的开发(782) 四、网络、通信与数据传输(783)4.1 网际协议过渡——从IPv4到IPv6(783)4.2 IPv6简介(783)4.3 传输控制协议(TCP)介绍(783)4.4 TCP/IP协议的ASIC设计与实现(783)4.5 IP电话的TCP/IP协议的实现方法(783)4.6 基于嵌入式TCP/IP协议栈的信息家电连接Internet单芯片解决方案(783)4.7 基于以太网的家庭网络平台(784)4.8 单芯片家庭网关平台CX821xx(784)4.9 用于单片机的以太网网关——网络通(784)4.10 基于“网络通”的单片机以太网CAN网关的应用(784)4.11 第三代快速以太网控制器及其应用(784)4.12 工业以太网在控制系统中的应用前景(784)4.13 工业以太网控制模块的研究与研制(785)4.14 以太网、控制网与设备网的性能比较与分析(785)4.15 嵌入式系统以太网控制器驱动程序的设计与实现(785)4.16 WIN9X下微机与单片机的串行通信(785)4.17 利用VB6.0实现PC机与单片机的串口通信(785)4.18 基于VB6的PC机与多台单片机通信的应用(785)4.19 用C++Builder6.0实现80C51与PC串行通信(785)4.20 VC++中实现基于多线程的串行通信(786)4.21 RS232串行通信线路的连接方法设计分析(786)4.22 高效率串行通信协议的设计(786)4.23 利用增强并口协议传输数据(786)4.24 应用于RS485网络的多信道串行通信接口的设计(786)4.25 以Visual C++实现PC与89C51之间的串行通信(786)4.26 智能多路RS422串行通信卡的设计(786)4.27 RS232接口转换为通用串行接口的设计原理(787)4.28 基于智能模块的RS485通信协议转换路由器(787)4.29 RS232接口转USB接口的通信方法(787)4.30 用VB实现PC与PDA的串行通信(787)4.31 利用WindowsAPI实现与GPS的串口通信(787)4.32 VB6.0在无线通信中的应用(787)4.33 用PTR2000实现单片机与PC机之间的无线数据通信(787)4.34 基于光纤RS232/RS485传输系统(788)4.35 利用串口实现PC与PDA的同步通信(788)4.36 实现32位单片机MC68332与PC机串行通信的底层程序设计(788)4.37 基于VB的USB设备检测通信研究(788)4.38 USB设备与PC机之间的通信机制的实现技术研究(788)4.39 利用MODEM实现单片机与PC机远程通信(788)4.40 谈谈电力线通信(788)4.41 低压电力线载波高速数据通信设计(789)4.42 PL2000在低压电力线载波通信中的应用(789)4.43 一种电力线扩频载波通信节点的具体实现(789)4.44 一种基于电力线的家庭以太网络实现方法(789)4.45 基于电力线载波的家庭智能化局域网研究(789)4.46 低压电力线扩频家庭自动化系统(789)4.47 智能家庭网络研究与开发(790)4.48 蓝牙在家庭网络中的实现(790)4.49 参照CEBus标准的家庭网络系统研究与实现(790)4.50 采用蓝牙技术构建智能家庭网络(790)4.51 家庭网络中的设备集成研究(790)4.52 一种嵌入式通信协议系统及在智能住宅网络中的应用(790)4.53 基于手机短消息(SMS)的远程无线监控系统的研制(791)4.54 基于GSM短信息方式的远程自来水厂地下水位自动监控系统(791)4.55 TC35及其在短消息自动抄表系统中的应用(791)4.56 计算机不同通信接口下的数据采集技术问题研究(791)4.57 80C152单片机在HDLC通信规程中的应用(791)4.58 内置MODEM通信模块在远程监测系统中的应用(791)4.59 用单片机普通I/O口实现多机通信的一种新方法(792)4.60 利用串行通信实现实时状态监控(792)4.61 基于FIFO芯片的单片机并行通信(792) 五、新器件与新技术(793)5.1 CYGNAL的C8051F02x系列高速SoC单片机(793)5.2 AduC812单片机控制系统的开发(793)5.3 可编程外围芯片PSD5xx与单片机68CHC11的接口(793)5.4 模糊单片机NLX230及其接口软硬件设计(793)5.5 低功耗MSP430单片机在3V与5V混合系统中的逻辑接口技术(793)5.6 MSP430F149单片机在便携式智能仪器中的应用(793)5.7 用MSP430F149单片机实现步进电机通用控制器(793)5.8 PIC和DS18B20温度传感器的接口设计(794)5.9 用P87LPC764单片机的I2C总线扩展“米”字形LED显示器(794)5.10 铁电存储器FM24C04原理及应用(794)5.11 CAT24C021在天文望远镜控制器中的应用(794)5.12 串行时钟芯片在智能传感器中的应用(794)5.13 RTC器件X1228及其在不间断供电系统中的应用(794)5.14 新型A/D转换技术——流水线ADC(794)5.15 集成芯片AD558及其应用(795)5.16 14位3MHz单片模数转换器AD9243的应用(795)5.17 16位模数转换器MAX195在单片机系统中的应用(795)5.18 24位模/数转换器CS5532及其应用(795)5.19 ADS7825模数转换芯片及其在高速数据采集系统中的应用(795)5.20 新型D/A变换器AD9755及其应用(795)5.21 单片机与串口D/A转换器MAX525的接口设计(795)5.22 几种PWN控制器(796)5.23 一种新型的可编程的4~20mA二线制变送器XTR108及其应用(796)5.24 可编程温度监控器ADT14及其应用(796)5.25 一种适用于51系列单片机的R/F转换电路(796)5.26 通用集成滤波器的特点及应用(796)5.27 串行显示驱动器PS7219及单片机的SPI接口设计(796)5.28 新型的键盘显示芯片——SK5279A的应用(797)5.29 高效语音压缩芯片AMBE—2000TM及其在语音压缩中的应用(797)5.30 适于语音处理的SDA80D51芯片及其数字录放音系统(797)5.31 基于ISD2560语音芯片的小型实用语音系统(797)5.32 发射信号处理器AD6622在软件无线电中的应用(797)5.33 基于UM3758108A芯片远距多路参数监测系统(797)5.34 单片频率计ICM7216D及应用(797)5.35 X25045芯片在微机测控系统中的应用(798)5.36 MC14562B在多CPU系统串行通信中的应用(798)5.37 高级串行通信控制器SAB82525及其应用(798)5.38 MAX121芯片在高速串行接口电路中的应用(798)5.39 应用DS2480实现RS232与单总线的串行接口(798)5.40 介绍一种真正的单芯片MODEM73M2901C/5V(798)5.41 HART调制解调器SYM20C15应用设计(799)5.42 TM1300同步串行接口与Modem模拟前端之间的通信(799)5.43 TEMIC系列射频卡及其应用(799)5.44 用Philips PCD600x实现多线电话并机(799)5.45 SDH专用集成电路套片DTT1C08A和DTT1C20A及其应用(799)5.46 GAL16V8用于步进电动机驱动器(799)5.47 UC3717步进电机驱动电路与89C2051单片机的接口技术(799)5.48 TinySwitch单片开关电源的设计方法(800)5.49 基于MAX883的动态供电设计(800)5.50 高压PWM电源控制器MAX5003及其应用(800)5.51 单片机与大功率负载的开关接口(800)5.52 迟滞开关功率转换器LM3485在电源系统中的应用(800)5.53 功率逻辑器件在嵌入式系统中的应用(800)5.54 TPS60101用于低功耗系统的电源解决方案(800)5.55 新型电能表芯片AT73C550及其应用(801)5.56 运动控制芯片MCX314及其应用(801) 六、总线技术(802)6.1 PCItoPCI桥及其应用设计(802)6.2 基于PCI总线的数据采集系统(802)6.3 VXI和PXI总线技术的应用及其发展前景(802)6.4 基于PC104总线的嵌入式以太网卡设计(802)6.5 基于RS485总线的传感器网络化技术研究(802)6.6 RS232总线转CAN总线装置的设计与实现(802)6.7 现场总线技术的发展与工业以太网综述(803)6.8 广义现场总线标准与工业以太网(803)6.9 用单片机设计现场总线转换网桥(803)6.10 基于LonWorks的在系统编程技术(803)6.11 Neuron芯片与MCS51系列单片机串行通信的实现(803)6.12 Neuron芯片多总线I/O对象的应用(803)6.13 CAN总线及其应用技术(804)6.14 CAN总线协议分析(804)6.15 CAN总线智能节点的设计和实现(804)6.16 CAN总线控制器SJA1000的原理及应用(804)6.17 CAN总线与PC机通信卡接口电路设计(804)6.18 CAN总线及其在测控系统中的实现(804)6.19 基于CAN总线的温度、压力控制系统(804)6.20 基于CAN总线的新型网络数控系统(805)6.21 CAN总线在混和动力汽车电机控制系统中的应用(805)6.22 CAN总线技术在石油钻井监控系统中的应用(805)6.23 一种电动阀的DeviceNet总线接口设计(805)6.24 单总线技术及其应用(805)6.25 美国DALLAS公司单线可编程数字温度传感器技术(805)6.26 基于单总线技术的农业温室控制系统设计(805)6.27 单总线协议转换器在分布式测控系统中的应用(806)6.28 单总线技术在电子信息识别系统中的应用(806)6.29 信息纽扣及其在安全巡检管理系统中的应用(806)6.30 SPI串行总线接口及其实现(806)6.31 通用串行总线USB及其产品开发(806)6.32 通用串行总线(USB)数据传输模型(806)6.33 基于USB总线的测试系统开发(806)6.34 一种USB外设的实现方法(807)6.35 基于USB接口的PTP协议在Win32上编程实现(807)6.36 USB在便携式外设间的应用及其协议(807)6.37 多USB接口的局域网接入技术的实现(807)6.38 USB接口设计及其在工业控制中的应用(807)6.39 USB技术在第四代数控测井系统中应用(807)6.40 用AN2131Q开发USB接口设备(807)6.41 USB/IrDA桥控制芯片STIr4200S(808)6.42 一种基于USB接口的家庭网络适配器的设计(808)6.43 基于USB总线的实时数据采集系统设计(808)6.44 基于SL11R的USB接口数据采集系统(808)6.45 基于USB的数据采集系统设计与实现(808)6.46 USB2.0在高速数采系统中应用(808)6.47 基于USB的航空检测数据采集系统的设计(808)6.48 基于USB总线的小型图像采集系统的设计(809)6.49 USB技术及其在图像数据传输中的应用(809)6.50 USB2.0在遥感图像采集中的应用(809)6.51 CCD摄像机的USB接口设计(809)6.52 带USB接口的发动机点火波形测量系统(809)6.53 USB接口智能传感器标定数据采集系统的设计(809)6.54 USB接口在粮仓自动测温系统中的应用(810)6.55 基于GPIF的USBATA解决方案(810)6.56 基于USB总线新型视频监视和会议系统(810)6.57 基于USB接口的高性能虚拟示波器(810)6.58 IEEE 1394与现场总线(810)6.59 IEEE 1394高速串行总线及其应用(810)6.60 EF4442及其应用(811) 七、可靠性及安全性技术(812)7.1 单片机系统可靠掉电保护的实现(812)7.2 提高单片机应用系统可靠性的软件技术(812)7.3 单片机应用系统中元器件的可靠性设计(812)7.4 DSP复位问题研究(812)7.5 计算机RAM检错纠错电路的设计与实现(812)7.6 利用USB接口进行软件加密的设计思想和实现方法(812)7.7 计算机电磁信息泄露与防护研究(813)7.8 USB软件狗的设计及反破解技术(813)7.9 全隔离微机与单片机的RS485通信技术(813)7.10 印制板的可靠性设计(813)7.11 多层布线的发展及其在电源电路电磁兼容设计中的应用(813)7.12 印制电路板的电磁兼容性预测(813)7.13 PCB的热设计(813)7.14 密码术研究综述(814)7.15 利用汇编语言实现DES加密算法(814)7.16 USB保护电路的选择(814)7.17 基于CAN总线的多机冗余系统的设计(814)7.18 蓝牙链路层安全性(814)7.19 开关电源谐波含量测试分析及抑制(814)7.20 系统可靠性冗余的优化研究(814)7.21 电子工程系统中电磁干扰的诊断和控制方法初探(815)7.22 微机化仪器电磁兼容性设计(815)7.23 电磁兼容设计中的屏蔽技术(815)7.24 几种电磁干扰的分析与解决(815)7.25 计算机的电磁干扰研究(815)7.26 电子电路中抗EMI设计(815)7.27 测试系统中干扰及其形成机理(816)7.28 一种基于ST62单片机的强抗干扰控制器的设计(816)7.29 微控制器硬件抗干扰技术(816)7.30 一种具有高抗干扰能力单片机通信电路的设计(816)7.31 测控系统抗干扰设计(816)7.32 单片机应用系统的抗干扰软件设计(816)7.33 变频系统测控软件抗干扰研究(816)7.34 快速瞬变脉冲群干扰的原理及硬件防护(817)7.35 巧用单片机软件抗系统瞬时干扰(817)7.36 微机式保护装置中浪涌干扰的硬件防护(817)7.37 具有抗干扰性能的单片机智能仪表的设计(817)7.38 RS232串行通信消除干扰噪声的设计方法分析(817)7.39 热插拔冗余电源的设计(817)7.40 IC卡读写器的密码识别(817)7.41 16位高抗干扰D/A转换(818) 八、DSP及其应用技术(819)8.1 TMS320F206定点DSP芯片开发实践(819)8.2 ADSP2181精简开发板的研制(819)8.3 DSP系统中的外部存储器设计(819)8.4 Flash存储器在DSP系统中的应用(819)8.5 DSP系统的硬盘接口研究(819)8.6 TMS320C6201与FlashRAM的接口设计与编程技术(819)8.7 基于DSP的实时MPEG4编码的软件优化设计(819)8.8 TMS320C62X DSP的软件开发与优化编程(820)8.9 IP安全内核及其DSP实现的研究(820)8.10 基于TMS320C54X DSK平台的Zoom?FFT的快速实现(820)8.11 高速DSP与串行A/D转换器TLC2558接口的设计(820)8.12 TMS320C2X DSP的一种实用人机接口的设计与实现(820)8.13 DSP系统中常用串口通信的设计(820)8.14 DSP与单片机之间串行通信的实现(821)8.15 基于DMA方式的8位单片机与16位DSP双机通信接口(821)8.16 DSP与PC机间的DMA通信接口设计(821)8.17 TMS320VC5402与I2C总线接口的实现(821)8.18 ZLG7289A与DSPSPI的接口技术(821)8.19 DSP与PCI总线接口设计及实现(821)8.20 TMS320C6X与PC高速通信的实现(822)8.21 DSP与PC之间的以太通信 (822)8.22 TM1300 DSP系统以太网接口的设计(822)8.23 基于DSP的CAN总线通信系统(822)8.24 TMS320VC5410 DSP中USB客户驱动程序开发与实现(822)8.25 基于TMS320C55x DSP的USB通信研究与固体设计(822)8.26 基于DSP的USB口数据采集分析系统(823)8.27 DSP数字信号处理器的浮点数正弦的实现(823)8.28 应用TMS320F240芯片设计高精度可控信号发生器(823)8.29 基于MSP430C325单片机的便携式体温计的设计(823)8.30 基于TMS320VC5409的语音识别模块(823)8.31 基于DSP的ADμC812应用系统设计(823) 九、HDL与可编程器件技术(824)9.1 一种基于CPLD器件的现代数字系统设计方法(824)9.2 基于可编程逻辑器件CPLD及硬件描述语言VHDL的EDA方法(824)9.3 利用硬件描述语言Verilog HDL实现对数字电路的设计和仿真(824)9.4 硬件描述语言VHDL指称语义的研究(824)9.5 VHDL语言逻辑综合的研究(824)9.6 CPLD/FPGA的优化设计(824)9.7 用单片机实现可编程逻辑器件的配置(825)9.8 UART的Verilog HDL实现及计算机辅助调试(825)9.9 基于CPLD的UART设计(825)9.10 用在系统可编程逻辑器件开发并行接口控制器(825)9.11 用CPLD设计EPP数据采集控制器(825)9.12 带FPGA的PCI接口应用(825)9.13 基于CPLD的PCI总线存储卡的设计(826)9.14 基于CPLD的中断控制器IP设计(826)9.15 基于FPGA设计的精度管理策略(826)9.16 VHDL语言在描述DES加密机中的应用(826)9.17 基于P89C51RD2 IAP功能的数据存取与软件升级(826)9.18 在系统可编程模拟器件ispPAC30及其应用(826)9.19 可编程模拟器设计及ispPAC30应用(826)9.20 ispPAD在模拟电路设计中的应用(827)9.21 在系统可编程模拟器件(ispPAC)及其应用(827)9.22 在系统可编程模拟器件ispPAC20及其应用(827)9.23 ispLSI1032E器件及其应用(827)9.24 用ispPAC20实现的最简温度测控系统(827)9.25 在系统可编程器件设计应用实例(827)9.26 在FPGA开发板上设计8051的开发平台(828)9.27 由可编程逻辑器件与单片机构成的双控制器(828)9.28 用VHDL设计专用串行通信芯片(828)9.29 基于FPGA的ARINC429总线接口芯片的设计与实现(828)9.30 I2C总线通信接口的CPLD实现(828)9.31 FPGA模拟MBUS总线的实现(828)9.32 基于FPGA的USB2.0控制器设计(828)9.33 USB外设接口的FPGA实现(829)9.34 循环冗余校验码的单片机及CPLD实现(829)9.35 可编程芯片在测控系统中的应用(829)9.36 可编程逻辑器件在浮点放大器中的应用(829)9.37 FPGA在高速多通道数据采集中的应用(829)9.38 在DSP采样系统中采用DAC实现量程自动转换(829)9.39 基于VHDL语言的数字频率计设计(830)9.40 基于VHDL语言的数字频率计的设计(830)9.41 CPLD在SPWM变频调速系统控制中的应用(830)9.42 ISP技术在交通控制器中的应用(830)9.43 基于ISP技术的有限状态机控制系统设计(830)9.44 如何使用ISP技术产生任意波形(830)9.45 打印控制卡的FPGA外围电路设计(830)9.46 加密可编程逻辑阵列芯片引脚的判别(831)9.47 蓝牙系统中的加密技术及其算法的FPGA实现(831)9.48 运用VHDL语言设计电视墙数字图像处理电路(831)9.49 CPLD在电路板故障诊断中的应用(831)9.50 用硬件描述语言设计一个简单的超标量流水线微处理器(831)9.51 用CPLD技术实现高速数据识别码检测器(831)9.52 用CPLD控制ISD2590语音芯片的技术应用(832) 十、综合应用(833)10.1 嵌入式处理器StrongARM的开发研究(833)10.2 基于StrongARM的视频采集与处理系统(833)10.3 基于StrongARM的远程网络监控系统设计(833)10.4 基于80C196KC的CAM锁定功能实现可控硅的触发控制(833)10.5 基于MSP430F149的低成本智能型电力监测仪(833)10.6 一种基于ADμC812单片机的数据采集器(833)10.7 基于PIC16C72单片机的线性V/F转换器设计(834)10.8 基于PIC16C923单片机的非接触式光纤温度测量仪(834)10.9 用89C2051构成智能仪表的键显接口(834)10.10 基于89C2051的解码器设计(834)10.11 基于AT89C2051的准方波逆变电源(834)10.12 单片机AT89C2051构成的智能型频率计(834)10.13 基于AT89C2051单片机的旋转变压器位置测量系统设计(834)10.14 AT89C2051单片机对显示驱动芯片MC14499的IC级代换(835)10.15 实用变量程模拟信号单片机检测电路(835)10.16 GPS高精度时钟的设计和实现(835)10.17 一种基于GPS的高速数据采集卡的实现(835)10.18 V/F转换电压测量系统(835)10.19 用20位DAC实现0~10 V可程控精密直流参考源的设计(835)10.20 单片MAX752实现的CCD供电电源的设计(835)10.21 基于双口RAM的智能型开关量控制卡的设计(836)10.22 矩阵键盘产生PC机键盘信号的应用设计(836)10.23 基于C51的汉字/数字混合液晶显示及更新的方法(836)10.24 实现串行E2PROM芯片的PC界面操作(836)10.25 一种软硬件结合的POCSAG码解码装置研制(836)10.26 蓝牙技术在医疗监护中的应用(836)10.27 一种红外感应泵液器的单片机应用设计(836)10.28 电话报警系统的设计(837)10.29 无轨电车整流站自动化监控系统(837)10.30 PWM恒流充电系统的设计(837)10.31 微功耗智能IC卡燃气表的研制(837)10.32 软件接口技术在串行通信中的应用(837)10.33 数字化直流接地系统绝缘检测仪的设计与开发(837)10.34 4Mbps红外无线计算机通信卡研制(837)10.35 MCB1电力测量控制仪中CAN总线通信模板的设计及编程(838)10.36 单片机在晶闸管触发电路中的应用(838)10.37 基于DS1302的子母钟系统(838)
上传时间: 2013-12-04
上传用户:vmznxbc
单片机应用技术选编(1) 第一章 单片机系统综合应用技术 11.1 且使用 8098单片机的几点体会 2 1.2 单片机的冷启动与热启动 31.3 大容量动态存储器在单片机系统中的应用111.4 MCS-51单片机系统中动态 RAM的刷新技巧141.5 MCS-51单片机系统中外RAM空间超64KB的扩展方法161.6 8031单片机P0口和P2口的应用开发 181.7 74LS164在 8031单片机中的两种用法261.8 用于 8031单片机的快速I/O接口281.9 MCS-51定时器定时常数初值的精确设定法301.10 8253的翻转问题及 MC6840的替代方法321.11 MCS-51单片机外部中断源的扩展设计351.12 MCS-51单片机多外中断扩展方法401.13 用优先权编码器74LS348扩展51系列单片机的外中断源421.14 用优先权编码器74LS148扩展51系列单片机的外中断源471.15 8031单片机与 BG5119A汉字库的接口方法521.16 可背插 SRAM的日历时钟 DS1216及其应用551.17 实时日历时钟集成电路MSM5832及其时序601.18 实时日历时钟集成电路MSM5832的接口技术631.19 实时时钟/日历芯片MC146818及其应用671.20 与 SICE仿真器通讯的IBM-PC机通讯程序的改进741.21 代码形式参数汇编子程序的应用821.22 单片机应用系统中的查表程序设计861.23 用状态综合法设计键盘监控程序901.24 单片机系统程序的加密技术961.25 MCS-96单片机程序保密的几种方法1001.26 GAL输出宏单元原理及使用105 1.27 通用阵列逻辑 GAL应用于步进电机控制实例110 第二章 传感器与前向通道接口技术1172.1 集成温度传感器 LM134及其应用1182.2 AD590集成温度一电流传感器原理及应用1242.3 集成温度传感器 AD590的应用1292.4 GS-800和 GS-130可燃气体传感器1332.5 集成化霍尔开关传感器1352.6 一种新颖实用的氧气/频率转换电路1392.7 MCS-51单片机与数字式温度传感器的接口设计1422.8 数字式温度传感器 SWC与 8031的接口及应用1452.9 低成本高精度压力传感器微机接口设计1472.10 峰值检测电路原理及应用1512.11 用 LF398制作的实用峰值和谷值保持电路1532.12 AD637集成真有效值转换器1562.13 传感器信号调理模块 ZB311622.14 2B31模块在称重智能仪表中的应用1662.15 传感器信号调理模块 2B30/2B31及其应用1692.16 高精度光纤位移测量系统的电路设计1752.17 集成电压一电流转换器 XTR100的工作原理及应用1792.18 传感器信号变送器 F693及其应用1852.19 一种用两片 VFC32构成的隔离放大器电路1912.20 实用线性隔离放大器1922.21 电桥放大电路中 7650的一些应用问题1942.22 A/D转换器 ICL7109的应用研究1962.23 5G14433模数转换器的启停控制2002.24 ADC1130模数转换器及其使用2042.25 16位 A/D转换器 ADC1143及其与 80C31单片机的接口2082.26 串行 I/O D/A A/D转换器与单片机的接口2132.27 单片机应用系统中的数字化传感器接口技术2162.28 ADVFC32 A/D转换接口技术2202.29 V/F和 F/V转换器 TD650原理与应用2242.30 AD650与 MC-51单片机的接口技术2302.31 利用VCO电路与单片机接口实现A/D转换2352.32 LM2907/2917系列F/V变换器在汽车检测中的应用2382.33 单信号多通道输入法改善 A/D转换器性能2412.34 用多片 A们转换芯片提高 A/D转换速度2452.35 实时数控增益调整与浮点 ADC电路2492.36 电荷耦合器件的单片机驱动2532.37 电荷耦合器件的结构原理与单片机的软件定时驱动2582.38 利用模数转换器提高转换信号的线性度2622.39 利用微型机解决转换中的非线性问题2682.40 利用非线性曲线存储实现线性化的方法2702.41 输出无非线性误差的可变电压源单臂电桥274 第三章 控制系统与后向通道接口技术2793.1 DAC1231与单片机 8031的接口技术2803.2 单路及多路 D八的光电隔离接口技术2843.3 光电隔离高压驱动器2903.4 TRAIC型光耦在 8031后向通道接口的应用分析2913.5 GD-L型光控晶闸管输出光耦合器2963.6 用于晶闸管过零触发的几种方式3003.7 固态继电器3043.8 固态继电器在交流电子开关中的应用3083.9 JCG型参数固态继电器3123.10 JCG型参数固态继电器的应用315 3.11 介绍几种适用于印刷电路板的超小型电磁继电器3193.12 用TWH8751集成电路构成微机控制的三步进电机驱动电源3223.13 3-4相步进电机控制器 5G87133253.14 5G0602报警电路及应用3283.15 两种新型温控光控兀的应用330 第四章 人机对话通道接口技术3334.1 单片机键盘接口设计3344.2 由电话机集成电路构成的单片机键盘接口电路3364.3 用 GAL设计的一种编码键盘接口3384.4 用 CMOS电路构成的非编码触摸键盘3424.5 设计薄膜开关应注意的一些问题3454.6 触摸式电子开关集成电路 5G673及其应用3504.7 8279用于拨码盘及显示器的接口设计3544.8 LED数码管的构造与特点3584.9 LED数码管的集成驱动器及配套器件3624.10 8279芯片的显示接口分析及32位数码管显示驱动电路设计366 4.11 用三端可调稳压块代替LED显示器的限流电阻3704.12 液晶显示器件的构造与特点3714.13 LCD七段显示器与单片机的接口3744.14 液晶显示器与单片机的接口技术3764.15 可编程LCD控制驱动器PPD72253814.16 微机总线兼容的四位 LCD驱动电路 TSC7211AM3874.17 使用8255的双极性归零脉冲驱动液晶显示器接口3914.18 DMC16230型 LCD显示模块的接口技术3954.19 点阵式液晶显示器原理及应用4034.20 实用液晶显示电路4094.21 8031控制的 CRT显示控制接口4144.22 用 8031控制多台彩色显示器的实现方法4194.23 高级语言处理器--T6668的结构与典型电路4234.24 延长 T6668语言电路录放时间的方法4294.25 T6668高级语音开发站4324.26 语言处理器 T6668在电话报警系统中的应用4354.27 新型语音处理器YYH16439 第五章 网络、通讯控制与多机系统4415.1 IBM-PC/XT和单片机通讯系统的设计4425.2 IBM-PC/XT微机与单片机的两种通讯接口4485.3 MCS-51单片机与 IBMPC微机的串行通讯4525.4 中央控制端与 MCS-51单片机间的数据通讯4595.5 IBMPC机与 MCS-51单片机的快速数据通讯4665.6 8031单片机与 PC-1500计算机的通讯4735.7 多片 MCS-51系统的一种串行通讯方式4775.8 多单片机处理系统并行通讯的实现4815.9 半双工远距离电流环多机通讯接口电路4855.10 多微机系统共享 RAM电路4905.11 串行通讯中的波特率设置4925.12 在MCS-51单片机的串行通讯中实现波特率的自动整定4965.13 J274和 J275在微机分布式测控系统中的应用5005.14 单电缆传送双向数据5045.15 新颖的多路遥控兀编译码器5055.16 DTMF在单片机无线数据通讯中的应用5085.17 MCS-8031单片机在红外遥控装置中的应用5155.18 一种实用光纤数字遥测系统5185.19 智能仪表通讯系统中一种冗余通道的设计5245.20 EIARS-232-C接口使用中的几个问题528 第六章 电源、电源变换与电源监视5316.1 电源扩展电路5326.2 一种简单的直流三倍压电路533 6.3 直流电源变换集成电路5356.4 直流电压变换器ICL7660的应用5376.5 一种廉价高精密基准电压源5406.6 精密可调基准电压源及其应用5416.7 引脚可编程精密基准电压源AD584及其应用5496.8 几种新型恒流源集成电路5536.9 CW334三端可调恒流源及应用5576.10 电源电压监视用芯片TL7705CP简介5606.11 电源电压监视用芯片TL7700简介5646.12 WMS7705B电源监视用芯片简介5676.13 具有HMOS结构的MCS-51系列单片机提供后备电源的方法570 第七章 系统抗于扰技术5757.1 微型计算机系统的抗干扰措施5767.2 计算机应用系统抗干扰问题5797.3 微机在工业应用中的抗干扰措施5867.4 利用电源监视TL7705芯片的抗电源于扰新方法5917.5 利用电源监视芯片WMS7705的抗电源干扰新方法5947.6 具有浪涌抑制能力的 TVP 6017.7 瞬变电压抑制M极管TVP的特性及应用6047.8 单片机实时控制软件抗干扰编程方法的探讨6077.9 一种简单实用的微机死机自复位抗干扰技术6107.10 单片机程序的监视保护6127.11 软件 WATCHDOG系统615 7.12 一种实用的"看门狗"电路6187.13 高电压下测量系统的抗干扰措施619 第八章 应用实例6218.1 单片机在多功能函数发生器中的应用6228.2 单片机波形发生器6298.3 单片机控制的调幅波发生器6338.4 用 8031单片机解调时统信号6368.5 具有 114DB动态范围的浮点数据采集系统6418.6 电热恒温箱单片微机控制系统6468.7 智能 I一、C丑测试仪的原理及设计6528.8 采用 LMS算法的单片机数字交流电桥6568.9 单片微机的数字相位测试仪6598.10 单片机的气体流量测量6628.11 单片机的相关流量仪6688.12 723型可见分光光度计6758.13 多功能微电脑电子秤6798.14 智能路面回弹检测仪6838.15 使用 CCD的单片机动态布面检测系统6878.16 使用 CCD的单片机激光衍射测径系统6908.17 使用 CCD的单片机动态线径测量仪6958.18 使用CCD的单片机中型热轧圆钢直径检测仪7018.19 用 MCS-51单片微机实现织布机的监测7058.20 单片机在工频参量测试中的应用7098.21 单片机 8098在直线电机控制中的应用715?
上传时间: 2014-12-28
上传用户:liufei