虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

源<b>代码分析</b>

  • C++完美演绎 经典算法 如 /* 头文件:my_Include.h */ #include <stdio.h> /* 展开C语言的内建函数指令 */ #define PI 3.141

    C++完美演绎 经典算法 如 /* 头文件:my_Include.h */ #include <stdio.h> /* 展开C语言的内建函数指令 */ #define PI 3.1415926 /* 宏常量,在稍后章节再详解 */ #define circle(radius) (PI*radius*radius) /* 宏函数,圆的面积 */ /* 将比较数值大小的函数写在自编include文件内 */ int show_big_or_small (int a,int b,int c) { int tmp if (a>b) { tmp = a a = b b = tmp } if (b>c) { tmp = b b = c c = tmp } if (a>b) { tmp = a a = b b = tmp } printf("由小至大排序之后的结果:%d %d %d\n", a, b, c) } 程序执行结果: 由小至大排序之后的结果:1 2 3 可将内建函数的include文件展开在自编的include文件中 圆圈的面积是=201.0619264

    标签: my_Include include define 3.141

    上传时间: 2014-01-17

    上传用户:epson850

  • 通过对用硬件描述语言VHDL表示的某个专用部件(如中断控制器、差错控制码编码/译码器

    通过对用硬件描述语言VHDL表示的某个专用部件(如中断控制器、差错控制码编码/译码器,此为译码器)的代码分析,构建它的逻辑结构,加深对相关部件设计技术的理解。 试验平台:MaxPlusII

    标签: VHDL 硬件描述语言 中断控制器 差错控制

    上传时间: 2015-04-08

    上传用户:lps11188

  • 数字运算

    数字运算,判断一个数是否接近素数 A Niven number is a number such that the sum of its digits divides itself. For example, 111 is a Niven number because the sum of its digits is 3, which divides 111. We can also specify a number in another base b, and a number in base b is a Niven number if the sum of its digits divides its value. Given b (2 <= b <= 10) and a number in base b, determine whether it is a Niven number or not. Input Each line of input contains the base b, followed by a string of digits representing a positive integer in that base. There are no leading zeroes. The input is terminated by a line consisting of 0 alone. Output For each case, print "yes" on a line if the given number is a Niven number, and "no" otherwise. Sample Input 10 111 2 110 10 123 6 1000 8 2314 0 Sample Output yes yes no yes no

    标签: 数字 运算

    上传时间: 2015-05-21

    上传用户:daguda

  • 源代码用动态规划算法计算序列关系个数 用关系"<"和"="将3个数a

    源代码\用动态规划算法计算序列关系个数 用关系"<"和"="将3个数a,b,c依次序排列时,有13种不同的序列关系: a=b=c,a=b<c,a<b=v,a<b<c,a<c<b a=c<b,b<a=c,b<a<c,b<c<a,b=c<a c<a=b,c<a<b,c<b<a 若要将n个数依序列,设计一个动态规划算法,计算出有多少种不同的序列关系, 要求算法只占用O(n),只耗时O(n*n).

    标签: lt 源代码 动态规划 序列

    上传时间: 2013-12-26

    上传用户:siguazgb

  • c语言版的多项式曲线拟合。 用最小二乘法进行曲线拟合. 用p-1 次多项式进行拟合

    c语言版的多项式曲线拟合。 用最小二乘法进行曲线拟合. 用p-1 次多项式进行拟合,p<= 10 x,y 的第0个域x[0],y[0],没有用,有效数据从x[1],y[1] 开始 nNodeNum,有效数据节点的个数。 b,为输出的多项式系数,b[i] 为b[i-1]次项。b[0],没有用。 b,有10个元素ok。

    标签: 多项式 曲线拟合 c语言 最小二乘法

    上传时间: 2014-01-12

    上传用户:变形金刚

  • crc任意位生成多项式 任意位运算 自适应算法 循环冗余校验码(CRC

    crc任意位生成多项式 任意位运算 自适应算法 循环冗余校验码(CRC,Cyclic Redundancy Code)是采用多项式的 编码方式,这种方法把要发送的数据看成是一个多项式的系数 ,数据为bn-1bn-2…b1b0 (其中为0或1),则其对应的多项式为: bn-1Xn-1+bn-2Xn-2+…+b1X+b0 例如:数据“10010101”可以写为多项式 X7+X4+X2+1。 循环冗余校验CRC 循环冗余校验方法的原理如下: (1) 设要发送的数据对应的多项式为P(x)。 (2) 发送方和接收方约定一个生成多项式G(x),设该生成多项式 的最高次幂为r。 (3) 在数据块的末尾添加r个0,则其相对应的多项式为M(x)=XrP(x) 。(左移r位) (4) 用M(x)除以G(x),获得商Q(x)和余式R(x),则 M(x)=Q(x) ×G(x)+R(x)。 (5) 令T(x)=M(x)+R(x),采用模2运算,T(x)所对应的数据是在原数 据块的末尾加上余式所对应的数据得到的。 (6) 发送T(x)所对应的数据。 (7) 设接收端接收到的数据对应的多项式为T’(x),将T’(x)除以G(x) ,若余式为0,则认为没有错误,否则认为有错。

    标签: crc CRC 多项式 位运算

    上传时间: 2014-11-28

    上传用户:宋桃子

  • 这是关于ns2学习的资料

    这是关于ns2学习的资料,利用c和otcl语言编写,文中给出代码分析

    标签: ns2

    上传时间: 2014-01-15

    上传用户:懒龙1988

  • 本书既讲解了网络编程所涉及的计算机科学及相关学科知识

    本书既讲解了网络编程所涉及的计算机科学及相关学科知识,也展示了如何编写自己的网络游戏。如果想了解网络游戏的通用建模与实现过程,本书有一定的参考价值。深入剖析游戏编程的实现思想,全力打造个性网络游戏空间。本书面向游戏编程人员,重点介绍如何使用VisualC++和UML进行棋牌类网络游戏建模和编程的实现过程。书中通过大量的程序代码分析了Socket通信程序设计、多线程程序设计、服务器端线程池模型、游戏客户端框架程序构建、服务器端数据库处理、报文处理,以及如何使用RationalRose工具进行网络游戏用户案例的划分和进行UML类框图的设计等内容,使读者能够借鉴本书的内容自行发挥设计出具有个性的网络游戏程序。本书适用于软件工程师、网络程序员、大学计算机软件专业和网络专业的学生,以及从事网络游戏开发的程序设计人员。

    标签: 网络编程 计算机科学

    上传时间: 2014-11-30

    上传用户:ikemada

  • The Assembly Programming Master Book--一本介绍Win32下的汇编编程的好书

    The Assembly Programming Master Book--一本介绍Win32下的汇编编程的好书,书中涉及Win32的方方面面,从内存管理、文件操作到DLL编程、网络编程以及调试、代码分析、内核驱动程序开发。是Win32下学习汇编语言开发不可多得的好书,CHM格式,英文版。

    标签: Programming Assembly Master Book

    上传时间: 2015-10-12

    上传用户:lijinchuan

  • crc任意位生成多项式 任意位运算 自适应算法 循环冗余校验码(CRC

    crc任意位生成多项式 任意位运算 自适应算法 循环冗余校验码(CRC,Cyclic Redundancy Code)是采用多项式的 编码方式,这种方法把要发送的数据看成是一个多项式的系数 ,数据为bn-1bn-2…b1b0 (其中为0或1),则其对应的多项式为: bn-1Xn-1+bn-2Xn-2+…+b1X+b0 例如:数据“10010101”可以写为多项式 X7+X4+X2+1。 循环冗余校验CRC 循环冗余校验方法的原理如下: (1) 设要发送的数据对应的多项式为P(x)。 (2) 发送方和接收方约定一个生成多项式G(x),设该生成多项式 的最高次幂为r。 (3) 在数据块的末尾添加r个0,则其相对应的多项式为M(x)=XrP(x) 。(左移r位) (4) 用M(x)除以G(x),获得商Q(x)和余式R(x),则 M(x)=Q(x) ×G(x)+R(x)。 (5) 令T(x)=M(x)+R(x),采用模2运算,T(x)所对应的数据是在原数 据块的末尾加上余式所对应的数据得到的。 (6) 发送T(x)所对应的数据。 (7) 设接收端接收到的数据对应的多项式为T’(x),将T’(x)除以G(x) ,若余式为0,则认为没有错误,否则认为有错

    标签: crc CRC 多项式 位运算

    上传时间: 2014-01-16

    上传用户:hphh