概述IP6805U 是一款无线充电发射端控制 SoC 芯 片,兼容WPC Qi v1.2.4 最新标准,支持 A11 或 A11a 线圈,支持 5W 充电。IP6805U 通过analog ping 检测到无线接收器,并建立与接收端之间的 通信,则开始功率传输。IP6805U 解码从接收器 发送的通信数据包,然后用 PID 算法来改变振荡频率从而调整线圈上的输出功率。一旦接收器上 的电池充满电时,IP6805U 终止电力传输。IP6805U 片内集成全桥驱动电路和全桥功率 MOS,电压&电流两路 ASK 通讯解调模块;方案集成度高,可显著降低方案尺寸和 BOM 成本。 背夹、无线充电底座 车载无线充电设备
上传时间: 2022-06-15
上传用户:
功率超声波应用技术已经在清洗、乳化和加工等方面取得可观的成效。超声消洗是功率超声技术最广泛也较成熟的一种应用,并且H益向各行各业渗透。超声波清洗中的压电换能器常因驱动电路的输出频率没有谐振在压电陶瓷片的共振频率上,因而导致压电陶瓷片的Q值下降,损耗加大,继而使得陶瓷片发热,效率减小而发生断裂。因此共振频率是压电陶瓷超声波换能器的一个重要参数,它随负载及工作温度等因素的变化而变化,或随时间的增加而变化,换能器馈电电路能否自动跟踪其共振频率就变得很重要。此外,由于目前市场上的超声波清洗机设备多采用单一频率的工作方式,也就是每套设备只能工作在一个超声频率上,这使得结构复杂的工件得不到充分清洗,同时,由于驻波场的形成,造成清洗盲区,使清洗效果不均匀。本文以半桥变换器为夹心式压电换能器的驱动电路,以脉宽调制器3525为脉冲波产生电路,采用单片机8951,DAC0832D/A转换器及软件技术,设计出具有频率跟踪功能的双频超声波发生器,较好地消除超声波清洗机清洗槽内由驻波引的清洗死角,有效地提高了超声波清洗机清洗效率。实验表明,采用双频超声波清洗方式的超声波清洗机,工作稳定、高效,具有广泛的应用前景.关键词:双频超声波发生器;动态阻抗匹配:超声波换能器;频率跟踪;单片机
标签: 超声波清洗机
上传时间: 2022-06-18
上传用户:
电力电子技术包括功率半导体器件与1C技术、功率变换技术及控制技术等几个方面,其中电力电子器件是电力电子技术的重要基础,也是电力电子技术发展的“龙头"。从1958年美国通用电气(GE)公司研制出世界上第一个工业用普通晶闸管开始,电能的变换和控制从旋转的变流机组和静止的离子变流器进入由电力电子器件构成的变流器时代,这标志着电力电子技术的诞生。到了70年代,晶闸管开始形成由低压小电流到高压大电流的系列产品。同时,非对称晶闸管、逆导晶闸管、双向品闸管、光控晶闸管等品闸管派生器件相继问世,广泛应用于各种变流装置。由于它们具有体积小、重量轻、功耗小、效率高、响应快等优点,其研制及应用得到了飞速发展。由于普通晶闸管不能自关断,属于半控型器件,因而被称作第一代电力电子器件。在实际需要的推动下,随着理论研究和工艺水平的不断提高,电力电子器件在容量和类型等方面得到了很大发展,先后出现了GTR,GTO、功率MOSET等自关断、全控型器件,被称为第二代电力电子器件。近年来,电力电子器件正朝着复合化、模块化及功率集成的方向发展,如IGPT,MCT,HVIC等就是这种发展的产物
上传时间: 2022-06-19
上传用户:qdxqdxqdxqdx
本文以超音频串联谐振式感应加热电源为研究对象,应用锁相环和PID技术,采用数字信号处理器(DSP)和复杂可编程逻辑器件(CPLD)联合控制的数字化技术实现感应加热电源的频率跟踪和0~1800自由移相调功,为感应加热电源系统的数字化、信息化、柔性化、智能化控制提供了优质、可靠的技术基础。论文首先介绍了感应加热的基本原理及感应加热技术的发展动态。然后通过对感应加热电源中的主电路拓扑进行分析,比较串联谱振逆变电路与并联谐振逆变电路的优缺点,选择了更适合超音频感应加热电源的串联语振主电路。在确定了设计方案后,详细分析了电源的主电路结构并进行了系统各组成部分器件的参数计算和选取。通过对锁相环原理进行了分析,提出一种基于DSP的数字锁相环(DPLL)的实现方法。论文在分析和对比了感应加热电源的各种调功方式后,选择了移相调功对感应加热电源进行恒流调节。通过两种硬件方案的对比,确定了一种最佳方案,实现了基准臂与移相臂之间移相角的数字控制信号的产生。论文搭建了以TMS320LF2407A为控制核心的硬件控制平台。包括了采样电路、保护电路、驱动电路、显示电路等外围电路。在此基础上编制了系统的程序,完成了样机,并对其进行了整机联调,给出了电源的实测波形。实验结果证明基于DSP的DPLL完全可以胜任超音频的频率跟踪,系统硬件电路可靠,程序运行良好。
上传时间: 2022-06-19
上传用户:20125101110
本文对家用太阳能光伏发电系统进行了研究和设计。首先在太阳能电池工作原理的基础上对其输出特性进行了仿真。根据其输出的非线性关系,阐述了最大功率点跟踪(MPPT)的原理,并结合DC-DC变换器对常用的MPPT算法进行了仿真。通过对比几种方法的优缺点,给出了一种新型MPPT算法。接着对储能蓄电池的充放电特性进行了研究,然后根据负载的要求计算了蓄电池的容量,并采用Boost变换器对其进行充电控制。其次,考虑到蓄电池组的电压等级较低,为使输出220V的交流电,通过分析几种拓扑结构,最终采用“推挽升压电路+全桥逆变”的电源设计方案以提高整个系统的效率,设计包括硬件和软件两部分。在推挽电路中介绍了各元器件参数的选择、高频变压器的设计及其控制电路等,其中PWM驱动电路输出采用图腾柱的方式以增强其驱动能力;逆变电路同样给出了功率开关管、滤波器的选取方法,并设计了过流保护和电压采样调理电路,对滤波器传递函数的仿真验证了设计的合理性。在软件设计中,基于DSP实现了MPPT控制、SPWM驱动信号的生成和P1闭环反馈控制。最后,论文给出了相关实验电路的调试结果,从中可以看出,所设计的电路实现了各部分的功能,并验证了设计的合理性。关键词:太阳能电池;最大功率点跟踪;推挽电路:SPWM:DSP
上传时间: 2022-06-19
上传用户:trh505
基于数码管显示板特点:主要器件:共阳数码管工作电压:直流5伏8位独立数码管显示。内部有三极管驱动电路。段码串有限流电阻。 TTL电平控制,可以直接由单片机IO口控制。八位段码输入,8位位码输入。动态扫描显示。
标签: 数码管
上传时间: 2022-06-20
上传用户:
当前世界能源短缺以及环境污染问题日益严重,这些问题迫使人们改变能源结构,寻找新的替代能源。可再生洁净能源的开发愈来愈受到重视,太阳能以其经济、清洁等优点倍受青睐,其开发利用技术亦得以迅速发展,而光伏水泵成为其中重要的研究领域。本文针对采用异步电机作为光伏水泵驱动电机的光伏水泵系统,详细介绍了推挽DC/DC升压电路、DC/AC IPM模块逆变电路、及基于dsPIC30F2010的控制电路等,并制作了一台试验样机。同时围绕多种最大功率跟踪方法展开研究,设计了最大功率跟踪程序。论文的主要工作如下:1)设计了DC-DC推挽升压电路,并通过加入TPS2812改进了推挽功率MOS管的驱动电路;2)研究分析了光伏水泵系统最大功率跟踪控制,通过Matlab对多种MPPT方式进行了仿真,确定系统采用黄金分割法最大功率跟踪方式;3)采用SVPWM调制技术,实现了系统的稳定快速跟踪控制:4)采用IPM模块作为逆变器主电路,大大简化了逆变器驱动电路和保护电路设计,缩小了系统体积,提高了效率和系统的可靠性;5)采用徵芯公司的dsPIC20F2010作为主电路的控制核心,并设计了包括W"保护电路在内的外围电路和相关的软件;6)详细介绍了系统主电路各元件参量的选择和设计;7)在样机上进行了不同负载下的试验,给出了试验波形和效率测试结果,验证了本系统的可靠性和高效性。
上传时间: 2022-06-20
上传用户:
IGBT模块的一些基本知识2·怎样读数据手册3.IGBT的驱动电路4,电压尖峰吸收回路5·短路6,IGBT模块的可靠性和实效分析7,仿真软件Melcosim的使用方法8.一些注意事项正的门极电压推荐15V(±10%)如右图所示Vog越高Vceat和Eon越小,损耗减小。但是16.5V以上的话短路耐量很小。所以正的门极电压为+15v±10%最合适。负的门极电压推荐5~10V右图表示开关损失与-Vcg的关系。-Voa=5V时Eoff不再变化,所以最小值设定为-Vo-5合适。另外,IGBT门极上会有尖峰电压重叠,为了防止不出现过大的负电压-Vgの的电压为5~10V最合适。(在一些场合无负压也是可以的)1类短路>桥臂直通>短路回路中电感较小,电流的上升速度极快>容易通过检测Vce(sat)实现保护II类短路>相间短路或对地短路短路回路ф电感稍大,电流的上升速度较慢>可以使用vce(sat),也可以使用霍尔来实现保护>这类短路,回路ф的电感是不确定的
标签: igbt模块
上传时间: 2022-06-21
上传用户:
一、IGBT 驱动1 驱动电压的选择IGBT 模块GE 间驱动电压可由不同地驱动电路产生。典型的驱动电路如图1 所示。图1 IGBT 驱动电路示意图Q1,Q2 为驱动功率推挽放大,通过光耦隔离后的信号需通过Q1,Q2 推挽放大。选择Q1,Q2 其耐压需大于50V 。选择驱动电路时,需考虑几个因素。由于IGBT 输入电容较MOSFET 大,因此IGBT 关断时,最好加一个负偏电压,且负偏电压比MOSFET 大, IGBT 负偏电压最好在-5V~-10V 之内;开通时,驱动电压最佳值为15V 10% ,15V 的驱动电压足够使IGBT 处于充分饱和,这时通态压降也比较低,同时又能有效地限制短路电流值和因此产生的应力。若驱动电压低于12V ,则IGBT 通态损耗较大, IGBT 处于欠压驱动状态;若 VGE >20V ,则难以实现电流的过流、短路保护,影响 IGBT 可靠工作。2 栅极驱动功率的计算由于IGBT 是电压驱动型器件,需要的驱动功率值比较小,一般情况下可以不考虑驱动功率问题。但对于大功率IGBT ,或要求并联运行的IGBT 则需要考虑驱动功率。IGBT 栅极驱动功率受到驱动电压即开通VGE( ON )和关断 VGE( off ) 电压,栅极总电荷 QG 和开关 f 的影响。栅极驱动电源的平均功率 PAV 计算公式为:PAV =(VGE(ON ) +VGE( off ) )* QG *f对一般情况 VGE( ON ) =15V,VGE( off ) =10V,则 PAV 简化为: PAV =25* QG *f。f 为 IGBT 开关频率。栅极峰值电流 I GP 为:
上传时间: 2022-06-21
上传用户:
本文以感应加热电源为研究对象,阐述了感应加热电源的基本原理及其发展趋势。对感应加热电源常用的两种拓扑结构-电流型逆变器和电压型逆变器做了比较分析,并分析了感应加热电源的各种调功方式。在对比几种功率调节方式的基础上,得出在整流侧调功有利于高频感应加热电源频率和功率的提高的结论,选择了不控整流加软斩波器调功的感应加热电源作为研究对象,针对传统硬斩波调功式感应加热电源功率损耗大的缺点,采用软斩波调功方式,设计了一种零电流开关准诺振变换器ZCS-QRCs(Zero-current-switching-Quasi-resonant)倍频式串联 振高频感应加热电源。介绍了该软斩波调功器的组成结构及其工作原理,通过仿真和实验的方法研究了该软斩波器的性能,从而得出该软斩波器非常适合大功率高频感应加热电源应用场合的结论。同时设计了功率闭环控制系统和PI功率调节器,将感应加热电源的功率控制问题转化为Buck斩波器的电压控制问题。针对目前IGBT器件频率较低的实际情况,本文提出了一种新的逆变拓扑-通过IGBT的并联来实现倍频,从而在保证感应加热电源大功率的前提下提高了其工作频率,并在分析其工作原理的基础上进行了仿真,验证了理论分析的正确性,达到了预期的效果。另外,本文还设计了数字锁相环(DPLL),使逆变器始终保持在功率因数近似为1的状态下工作,实现电源的高效运行。最后,分析并设计了1GBT的缓冲吸收电路。本文第五章设计了一台150kHz,10KW的倍频式感应加热电源实验样机,其中斩波器频率为20kHz,逆变器工作频率为150kHz(每个IGBT工作频率为75kHz),控制孩心采用TI公司的TMS320F2812 DSP控制芯片,简化了系统结构。实验结果表明,该倍频式感应加热电源实现了斩波器和逆变器功率器件的软开关,有效的减小了开关损耗,并实现了数字化,提高了整机效率。文章给出了整机的结构设计,直流斩波部分控制框图,逆变控制框图,驱动电路的设计和保护电路的设计。同时,给出了关键电路的仿真和实验波形。
上传时间: 2022-06-22
上传用户: