本文主要由7 项内容介绍SPI并会在最后附上测试源码供参考:1. SPI的通信协议2. SPI通信初始化(以STM32为从机, LPC1114为主机介绍)3. SPI的读写函数4. SPI的中断配置5. SPI的SMA操作6. 测试源码7. 易出现的问题及原因和解决方法一、SPI的通信协议SPI(Serial Peripheral Interface)是一种串行同步通讯协议,由一个主设备和一个或多个从设备组成,主设备启动一个与从设备的同步通讯,从而完成数据的交换。SPI 接口一般由4 根线组成, CS片选信号(有的单片机上也称为NSS),SCLK时钟信号线, MISO数据线(主机输入从机输出),MOSI数据线(主机输出从机输入) ,CS 决定了唯一的与主设备通信的从设备,如没有CS 信号,则只能存在一个从设备,主设备通过产生移位时钟信号来发起通讯。通讯时主机的数据由MISO输入,由MOSI输出,输入的数据在时钟的上升或下降沿被采样,输出数据在紧接着的下降或上升沿被发出(具体由SPI的时钟相位和极性的设置而决定) 。二、以STM32为例介绍SPI通信1. STM32f103 带有3 个SPI模块其特性如下:2 SPI
上传时间: 2022-06-22
上传用户:
1前言光谱仪是测量光源和物质光谱特性的重要装置,它在颜色显示,视觉效果比对和生物化学领域有着广泛的应用。近年来,电荷耦合器件CCD取得了飞速的发展,工艺日趋完善,已能批量制造完全没有缺陷的高可靠性低成六的CCD芯片,这种器件有很宽的光谱响应特性,完全可以代替感光乳剂,应用在光谱测量上",因此,设计出配合CCD光谱仪器使用的光学结构对于仪器的小型化有着重大的意义.2微型CCD光谱仪的光学结构设计2.1光栅的选择与设计在光谱仪核心元件分光器件的发展历程中,经历了色散校镜到衍射光栅到采用干涉调制元件和信息变换技术的演化。近年来声光调造器件AOTF的技术和应用也有了很大发展,没有机械活动件,全固态、电子调诸.结构小而牢周,可承受震动冲击等一系列优点,使其具有明显的技术和应用竞争力2.3。本设计中选择闪耀光栅。因为光棚与其他分光元件相比较,有许多优点。首先,光栅的角色散率几乎和波长无关,这对光谱的波长测量很有利。其二,光棚的分辨率比棱镜大,价格也较低,其三,光栅不受材料透过率的限制,它可以在整个光学光谱区中应用。
上传时间: 2022-06-22
上传用户:
SPI总线协议及SPI时序图详解SP1是英语Serial Peripheral Interface的缩写,顾名思义就是串行外围设备接口。SPI是一种高速的、全双工、同步的通信总线,并且在芯片的管脚上只占用四根线,节约了芯片的管脚,同时为PCB的布局上节省空间,提供方便,正是出于这种简单易用的特性,现在越来越多的芯片集成了这种通信协议。SP1是一个环形总线结构,由ss(cs)、sck,sdi、sdo构成,其时序其实很简单,主要是在sck的控制下,两个双向移位寄存器进行数据交换。上升沿发送、下降沿接收、高位先发送上升沿到来的时候,sdo上的电平将被发送到从设备的寄存器中,下降沿到来的时候,sdi上的电平将被接收到主设备的寄存器中,假设主机和从机初始化就绪:并且主机的sbuff-Oxaa(10101010),从机的sbuff-0x55(01010101),下面将分步对spi的8个时钟周期的数据情况演示一遍(假设上升沿发送数据)。
上传时间: 2022-06-23
上传用户:fliang
1引言随着CCD技术的飞速发展,传统的时序发生器实现方法如单片机D口驱动法,EPROM动法,直接数字驱动法等,存在着调试困难、灵活性较差、驱动时钟频率低等缺点,已不能很好地满足CCD应用向高速化,小型化,智能化发展的需要。而可编程逻辑器件CPLD具有了集成度高、速度快、可靠性好及硬件电路易于编程实现等特点,可满足这些需要,而且其与VHDL语言的结合可以更好地解决上述问题,非常适合CCD驱动电路的设计。再加上可编程逻辑器件可以通过软件编程对其硬件的结构和工作方式进行重构,从而使得硬件的设计可以如同软件设计那样方便快捷,本文以东芝公司TCD1702C为例,阐述了利用CPLD技术,在分析其驱动时序关系的基础上,使用VHDL语言实现了CCD驱动的原理和方法。2线阵的工作原理及驱动时序分析TCD1702C为THOSHBA公司生产的一种有效像元数为7500的双沟道二相线阵CCD,其像敏单元尺寸为7um×7um×7um长宽高。中心距亦为7um.最佳工作频率IMHzTCD1702C的原理结构如图1所示。它包括:由存储电极光敏区和电荷转移电极转移栅组成的摄像机构,两个CCD移位寄存器,输出机构和补偿机构四个部分,如图1所示,
上传时间: 2022-06-23
上传用户:
本文提出了一种基于CCD的微型光谱仪的系统设计方案。该方案选用CCD为光谱测量的探测器,光学系统采用折叠Czerny-Turner结构设计,大大减少了光学系统的体积;在探测系统方面,以现场可编程逻辑门阵列(FPGA)EPW7032设计了CCD驱动和信号采集系统。在FPGA上采用了片上可编程(SOPC)技术,集成了NiosII软核UART、CPU等功能模块,整个系统只用一片FPCA资源开发了CCD驱动电路、A/D采样控制电路、USB驱动电路等模块,使整个光谱仪系统的实现了单芯片控制。完成了基于USB的微型光谱仪和PC机的通讯,并使用Labview开发了光谱采集和处理软件,实现对光谱仪的光谱数据处理、光谱谱线绘制、波长定标相关功能。最后,对本文的系统进行了相关实验,实验表明:按照该方案设计的微型光谱仪能同时对多个波长进行测量,整个光谱仪的体积重量达到了设计所要求的微型化、小型化。为了使CCD探测系统能检测到较宽的光谱范围,选择3694个像素的线阵CCD作为探测器件。采用CD专用A/D转换芯片M始X1101对CCD输出信号进行相关及模数转换处理,转换后的数字信号暂时储存在FPGA中,经处理后通过USB总线传送到上位机,由应用软件完成光谱数据进一步的分析、处理和显示。FPGA作为整个系统的核心,完成了CCD驱动时序、MAX1101采样时序和FT245BM(USB)芯片脉冲控制时序。
上传时间: 2022-06-23
上传用户:
CCD( Charge Coupled Device )全称为电荷耦合器件,是70 年代发展起来的新型半导体器件。它是在MOS集成电路技术基础上发展起来的,为半导体技术应用开拓了新的领域。它具有光电转换、信息存贮和传输等功能,具有集成度高、功耗小、结构简单、寿命长、性能稳定等优点,故在固体图像传感器、信息存贮和处理等方面得到了广泛的应用。CCD图像传感器能实现信息的获取、转换和视觉功能的扩展,能给出直观、真实、多层次的内容丰富的可视图像信息,被广泛应用于军事、天文、医疗、广播、电视、传真通信以及工业检测和自动控制系统。实验室用的数码相机、光学多道分析器等仪器,都用了CCD作图象探测元件。一个完整的CCD器件由光敏单元、转移栅、移位寄存器及一些辅助输入、输出电路组成。CCD工作时,在设定的积分时间内由光敏单元对光信号进行取样,将光的强弱转换为各光敏单元的电荷多少。取样结束后各光敏元电荷由转移栅转移到移位寄存器的相应单元中。移位寄存器在驱动时钟的作用下,将信号电荷顺次转移到输出端。将输出信号接到示波器、图象显示器或其它信号存储、处理设备中,就可对信号再现或进行存储处理。由于CCD光敏元可做得很小(约10um),所以它的图象分辨率很高。
上传时间: 2022-06-23
上传用户:
摘要:为提高CCD摄像机的成像质量,同时使镜头结构紧凑、小型化,在大视场光学镜头的设计中,引入标准二次曲面和偶次非球面。根据初级像差理论,分析了非球面的位置、初始结构参数的求解规律。通过理论计算和ZEMAX光学设计软件的优化,给出工作波长为Q~Q7m、全视场角为80,相对孔径为1:15的镜头设计实例。该镜头由7块镜片组成,包括一个标准二次曲面和两个8次方非球面;在40p/mm空间频率处的MTF值超过Q85,全视场畸变小于3%,像质优良。关键词:CCD摄像机;大视场;光学镜头;非球面引言CCD摄像设备在图像传感领域的迅速发展,成为现代光电子学和测试技术中最为引人关注的研究热点之一。在科研领域,由于CCD具有灵敏度高、噪声低、成本低、小而轻等优点,已成为研究宏观(如天体)和微观(如生物细胞)现象不可缺少的工具。在国防军事领域,CCD成像技术在微光、夜视及遥感应用中发挥着巨大的作用。总之,在各类光电成像领域中,它已逐步取代了真空摄像管的成像系统。
上传时间: 2022-06-23
上传用户:
DS1302包括时钟/日历寄存器和31字节(8位)的数据暂存寄存器,数据通信仅通过一条串行输入输出口。实时时钟/日历提供包括秒、分、时、日期、月份和年份信息。闰年可自行调整,可选择12小时制和24小时制,可以设置AM、PM。 主要工作原理图如Figure 1 所示:移位寄存器,控制逻辑,晶振,时钟和RAM。在进行任何数据传输时,必须被制高电平(注意虽然将它置为高电平,内部时钟还是在晶振作用下走时的,此时,允许外部读写数据),在每个SCLK上升沿时数据被输入,下降沿时数据被输出,一次只能读写一位,适度还是写需要通过串行输入控制指令来实现(也是一个字节),通过8个脉冲便可读取一个字节从而实现串行输入与输出。最初通过8个时钟周期载入控制字节到移位寄存器。如果控制指令选择的是单字节模式,连续的8个时钟脉冲可以进行8位数据的写和8位数据的读操作,SCLK时钟的上升沿时,数据被写入DS1302,SCLK脉冲的下降沿读出DS1302的数据。8个脉冲便可读写一个字节。在突发模式,通过连续的脉冲一次性读写完7个字节的时钟/日历寄存器(注意时钟/日历寄存器要读写完),也可以一次性读写8~328位RAM数据(可按实际情况读写一定数量的位,不必全部读写, 两者的区别)。
上传时间: 2022-06-24
上传用户:默默
一.SPI总线简介串行外围设备接口SPI(serial peripheral interface)总线技术是Motorola公司推出的一种同步串行接口。SPI用于CPU与各种外围器件进行全双工、同步串行通讯。它只需四条线就可以完成MCU与各种外围器件的通讯,这四条线是:串行时钟线(CSK、主机输入/从机输出数据线(MISO)、主机输出/从机输入数据线(MOSI)、低电平有效从机选择线CS。当SPI工作时,在移位寄存器中的数据逐位从输出引脚(MOSl)输出(高位在前),同时从输入引脚(MISO)接收的数据逐位移到移位寄存器(高位在前)。发送一个字节后,从另一个外围器件接收的字节数据进入移位寄存器中。即完成一个字节数据传输的实质是两个器件寄存器内容的交换。主SPI的时钟信号(SC)使传输同步。其典型系统框图如下图所示。
上传时间: 2022-06-25
上传用户:
在数字技术高速发展的今天,有许多芯片被用作数据交换的核心器件,以起到承上启下数据交换的权纽作用。FPGA即现场可编程门阵列,由于其运行速度快且具有可编程的灵活性,现在已经成为EDA设计的主要逻辑器件,SPI接口技术是一种高速高效率的串行接口技术,主要用于扩展外设和进行数据交换,在许多高档的单片机中,已经作为一种配置标准。如AT8958252.ADC812等等,使工程技术人员在设计系统时具有更大的灵活性,因而受到工程技术人员的欢迎。但像MCS51系列、MCS96系列等应用非常广泛的单片机并不带SPI接口,这样就限制了在这些系统中使用带SPI接口的器件。该文将用软件模拟SPI接口时序的方法来实现MCU与FPGA之间的数据换换。1 SP1总线接口概述SPI(Serial Peripheral Interfce-串行外设接口)总线系统是一种同步串行外设接口,允许MCU与各种外围设备以串行方式进行通信、数据交换。SPIT在芯片的管脚上只占用4根线,节约了芯片的管脚,同时为PCB的布局上节省空间,提供方便,正是出于这种简单易用的特性,现在越来越多的芯片集成了这种通信协议.SPI是一个环形总线结构,由SS(CS)、SCK.SDI SD0构成,其时序其实很简单,主要是在SK的控制下,两个双向移位寄存器进行数据交换。SPI主要特点有:可以同时发出和接收串行数据;可以当作主机或从机工作:提供频率可编程时铁发送结束中断标志;写冲突保护;总线竞争保护等。
上传时间: 2022-06-26
上传用户: