在Visual C++ 编译环境下, 模拟退火算法算法的程序,并利用它们求解了48个城市的TSP问题。
上传时间: 2014-01-23
上传用户:tzl1975
这是一个人工智能方面的算法程序,里面包含模拟退火算法、神经网络算法以及遗传算法三个。
上传时间: 2017-04-17
上传用户:pinksun9
一系列好用的用户友好的启发式优化算法,包括非自适应算法,基于模拟退火算法的种群算法,基本遗传算法,差分进化算法以及粒子群优化算法。此外,也包括神圣算法,它利用了所有这些优化算子,虽然有时交换种群之间的不同算法。
上传时间: 2013-12-11
上传用户:13160677563
人工智能中,用模拟退火方法解决旅行商问题,采用C++实现
标签: 人工智能
上传时间: 2013-12-26
上传用户:banyou
微分进化算法DE是1995年由Rainer Storn和Kenneth Price首先提出。DE已被证明在求解过程中具有高效性、收敛性、鲁棒性等优点[5,6] 。它在许多优化问题中都表现出优于自适应模拟退火算法、POS 算法、GA算法的性能。DE利用实数值参数向量作为每一代的种群,它的自参考种群繁殖方案与其他优化算法不同。
标签: Kenneth Rainer Price Storn
上传时间: 2014-01-17
上传用户:851197153
出版社:高等教育出版社 作者:汪定伟 简介 高等教育出版社2007年4月出版。 本书主要介绍近年来产生的多种智能优化算法,包括遗传算法、禁忌搜索、模拟退火、蚁群优化算法、粒子群优化算法、捕食搜索算法和动态进化算法等算法的产生、算法的基本思想和理论、算法的基本构成、计算步骤、主要的变型算法及几个数值举例...
上传时间: 2014-11-14
上传用户:helmos
经典的人工智能问题求解,附有遗传算法和模拟退火算法,以及调试过程
标签: 人工智能
上传时间: 2017-08-04
上传用户:com1com2
在本讲义中,我们将着重讲述一些数学建模中常用的算法,包括神经网络算法、遗传算法、模拟退火算法和模糊数学方法。用这些算法可以较容易地解决一些很复杂的,常规算法很难解决的问题。由于这些算法都有着很深的理论背景,因此,本讲义中不可能也没有必要详细地讨论这些算法的理论,我们的目标在于应用,大家只需大概了解这些算法的原理,知道能用这些算法解决一类什么样的问题,并能应用这些算法解决数学建模中的一些问题即可。 因为着眼于应用,所以我们还提供了一些程序代码,使用者只需套用这些程序,便可使问题得到很好的解决。
上传时间: 2020-09-18
上传用户:
30个数学建模智能算法及MATLAB程序代码:chapter10基于粒子群算法的多目标搜索算法.rarchapter11基于多层编码遗传算法的车间调度算法.rarchapter12免疫优化算法在物流配送中心选址中的应用 .rarchapter13粒子群优化算法的寻优算法.rarchapter14基于粒子群算法的PID控制器优化设计.rarchapter15基于混合粒子群算法的TSP搜索算法 .rarchapter16 基于动态粒子群算法的动态环境寻优算法.rarchapter17基于PSO工具箱的函数优化算法.rarchapter18鱼群算法函数寻优.rarchapter19基于模拟退火算法的TSP算法.rarchapter1遗传算法工具箱.rarchapter20基于遗传模拟退火算法的聚类算法.rarchapter21模拟退火算法工具箱及应用.rarchapter22蚁群算法的优化计算——旅行商问题(TSP)优化 .rarchapter23基于蚁群算法的二维路径规划算法.rarchapter24 基于蚁群算法的三维路径规划算法.rarchapter25有导师学习神经网络的回归拟合——基于近红外光谱的汽油辛烷值预测.rarchapter26.rarchapter27无导师学习神经网络的分类——矿井突水水源判别.rarchapter28支持向量机的分类——基于乳腺组织电阻抗特性的乳腺癌诊断 .rarchapter29支持向量机的回归拟合——混凝土抗压强度预测.rarchapter2基于遗传算法和非线性规划的函数寻优算法 .rarchapter30极限学习机的回归拟合及分类.rarchapter3基于遗传算法的BP神经网络优化算法 .rarchapter4sa_tsp.rarchapter5基于遗传算法的LQR控制器优化设计.rarchapter6遗传算法工具箱详解及应用 .rarchapter7多种群遗传算法的函数优化算法.rarchapter8基于量子遗传算法的函数寻优算法 .rarchapter9基于遗传算法的多目标优化算法.rar
上传时间: 2021-11-28
上传用户:
蚁群算法基本模型STEP1(外循环)若满足算法停止规则,停止计算,输出计算得到的最好解给定外循环的最大数目,表明有足够的蚂蚁工作当前最优解连续K次相同而停止,K是给定的整数,表示算法已收敛◆给定优化问题的下界和误差值,当算法得到的目标值同下界之差小于给定的误差值时,算法终止否则使蚂蚁s(1≤s≤m)从起点出发,用L(S)表示蚂蚁S行走的城市集合,初始L(s)为空集。设m只蚂蚁在图的相邻节点间移动,协作异步地得到解。蚂蚁计算出下一步所有可达节点的一步转移概率,并按此概率实现一步移动,依此往复。一步转移概率由图中每条边上的两类参数决定:信息素值、可见度(即先验值)。信息素的更新有2种方式:挥发——所有路径上信息素以一定比率减少增强——给评价值“好”(有蚂蚁走过)的边增加信息素蚁群算法基木模型令我们以求解平面上n个城市的TSP问题(1,2,…,n)表示城市号为例说明ACA的模型。n个城市的TSP问题就是寻找通过n个城市各次且最后回到出发点的最短路径蚁群算法研究现状令ACA是模拟自然界中真实蚁群的觅食行为而形成的一种模拟进化算法。10年多来的研究结果已经表明:ACA用于组合优化具有很强的发现较好解的能力,具有分布式计算易于与其他方法相结合、鲁棒性强等优点,在动态环境下也表现出高度的灵活性和健壮性。在求解TSP、QAP问题方面,与遗传算法、模拟退火算法等算法比较,ACA仍是最好的解决方法之一。
标签: 蚂蚁算法
上传时间: 2022-03-10
上传用户: