恒定转弯率与速度模型的扩展卡尔曼交互式多模型的滤波跟踪算法。
上传时间: 2021-07-22
上传用户:迷途在北极的鱼
蚁群算法基本模型STEP1(外循环)若满足算法停止规则,停止计算,输出计算得到的最好解给定外循环的最大数目,表明有足够的蚂蚁工作当前最优解连续K次相同而停止,K是给定的整数,表示算法已收敛◆给定优化问题的下界和误差值,当算法得到的目标值同下界之差小于给定的误差值时,算法终止否则使蚂蚁s(1≤s≤m)从起点出发,用L(S)表示蚂蚁S行走的城市集合,初始L(s)为空集。设m只蚂蚁在图的相邻节点间移动,协作异步地得到解。蚂蚁计算出下一步所有可达节点的一步转移概率,并按此概率实现一步移动,依此往复。一步转移概率由图中每条边上的两类参数决定:信息素值、可见度(即先验值)。信息素的更新有2种方式:挥发——所有路径上信息素以一定比率减少增强——给评价值“好”(有蚂蚁走过)的边增加信息素蚁群算法基木模型令我们以求解平面上n个城市的TSP问题(1,2,…,n)表示城市号为例说明ACA的模型。n个城市的TSP问题就是寻找通过n个城市各次且最后回到出发点的最短路径蚁群算法研究现状令ACA是模拟自然界中真实蚁群的觅食行为而形成的一种模拟进化算法。10年多来的研究结果已经表明:ACA用于组合优化具有很强的发现较好解的能力,具有分布式计算易于与其他方法相结合、鲁棒性强等优点,在动态环境下也表现出高度的灵活性和健壮性。在求解TSP、QAP问题方面,与遗传算法、模拟退火算法等算法比较,ACA仍是最好的解决方法之一。
标签: 蚂蚁算法
上传时间: 2022-03-10
上传用户:
1.针对一类参数未知的非线性离散时间动态系统,提出了一种新的基于神经网络的MMAC方法。首先,将系统分为线性部分和非线性部分。针对系统线性部分采用局部化方法逮立多个固定模型覆盖系统的参数范围,在此基础上,建立自适应模型来提高系统性能;针对系统非线性部分建立非线性神经网络预测模型来邏近系统的非线性。然后,针对每个子模型设计相应的擅制器。最后,设计基于误差范数形式的性能指标函数对控制器进行硬切换。仿真结果表明,所提出的MMAC方法与传统的在参数空间均匀分布的MMAC方法相比能显著提高非线性系统的暂态性能。2针对一类具有参数跳变的非线性离散时间动态系统,提出子一种基才聚类方法和神经网络的MMAC方法,首先,采用模糊c均值聚类算法对系统先验数据进行分类处理,再分别对每类数据采用RLS算法建立多个固定模型。在此基础上,建立两个白适应模型来提高系统响应速度和控制品质,建立神经网络预测模型来补偿系统非线性。然后,分别针对相应的子模型设计线性鲁棒自适应控制器和神经网络控制器。最后,采用基于信号有界和测量误差的性能切换指标对控制器进行切换,并证明闭环系统的稳定性。仿真结果表明,所提出的算法能更好地解决非线性系统发生参数跳变问题,使得系统具有良好的控制品质3.针对MMAC方法中的模型库优化问题,考虑系统实际运行数据,提出了种基于相似度准则和设置最大模型数的动态优化模型库方法。该方法能对新数据进行综合考量并判断是否应该将该数据纳入子模型建模,并通过设置最大模型数来确保系统用最少的子模型就能保证系统的控制性能。仿真结果表明,所提出的算法能极大地减少子模型数量且具有较好的控制效果。关键词:非线性系统;多模型方法;自适应控制;模糊聚类;神经网络
标签: 自适应控制
上传时间: 2022-03-11
上传用户:
准确量化和预测陆地生态系统碳水通量对于理解陆气间相互作用,预测未来气候变化和控制温室效应具有重要意义。通量观测和模型模拟是目前研究碳水通量的两种主要方法。通量观测精度较高,但观测范围局限、站点分布不均匀,易受环境影响,难以区域扩展;模型模拟可实现不同尺度参量估算,但由于理想化假设、模型参数和驱动数据等限制,导致其模拟结果往往与真实值存在较大偏差。模型-数据融合方法主要是通过参数估计和数据同化两种技术集成观测和模型信息,建立两者相互制约调节的优化关系,以提高模型结果与真实值之间的匹配程度。基于该思路,本研究在地面观测数据、遥感卫星资料以及相关气候环境数据基础上,重点突破全球动态植被模型(Lund-Potsdam-Jena Dynamic Globa Vegetation Model.LPJ-DGVM)敏感参数优化方法,获取适宜中国的参数化方案:在此基础上,引入数据同化算法,将遥感卫星产品信息与模型相融合,在模拟过程中不断校正原有模型模拟轨迹,提高模型适用性。将以上改进的模型推广至中国区域,实现对20002015年中国地区总初级生产力(Gross Primary Productivity GPP)和敬发(Evapotranspiration,ET的空间格局模拟及分析。主要结论如下1)将LP」DGwM中所选出的22个可调参数(涉及光合、呼吸、水平衡异速生长、死亡、建立以及土壤和掉落物分解共七个作用领域)在各自取值范围内随机获得不同的参数组合,结果表明22个参数可引起GPP和ET模拟结果产生较大的不确定性,尤其集中在生长季。所有站点GPP相对不确定性(Relative Uncertainty,RU)基本保持在09-1.25之间,不具有明显的年际变异性:ET相对不确定性RU月变化趋势明显,且基本处于0.5以下,明显低于GPP,说明所筛选的22个参数对GP模拟产生的影响更为显著。
标签: 数据融合
上传时间: 2022-03-16
上传用户:shjgzh
应用无迹卡尔曼滤波算法(UKF)进行锂电池的SOC估计,采用Thevenin二阶RC等效电路模型,对HPPC电池脉冲充放电实验数据进行Matlab处理,得到较为准确的模型.通过在Matlab中编写算法程序,对不同工况的估计值与实际值进行误差估算及对比分析,通过此算法进行SOC估计,得到该算法可有效降低系统误差并纠正SOC的初值偏差.The non trace Calman filter (UKF) is applied to the SOC estimation of lithium battery. The Thevenin two order RC equivalent circuit model is used to process the HPPC battery pulse charge discharge experimental data by Matlab processing, and a more accurate model is obtained. By writing algorithm program in Matlab, the error estimation and comparison analysis of the estimated value and actual value of different states are carried out, and the SOC estimation is carried out by this algorithm. The algorithm can effectively reduce the system error and correct the initial value deviation of the SOC.
标签: 卡尔曼滤波
上传时间: 2022-05-03
上传用户:默默
第一章 机器学习革命学习算法入门为何商业拥护机器学习给科学方法增压10亿个比尔·克林顿学习算法与国家安全我们将走向何方第二章 终极算法来自神经科学的论证来自进化论的论证来自物理学的论证来自统计学的论证来自计算机科学的论证机器学习算法与知识工程师天鹅咬了机器人终极算法是狐狸,还是刺猬我们正面临什么危机新的万有理论未达标准的终极算法候选项机器学习的五大学派第三章 符号学派:休谟的归纳问题特别说明:仅作为爱好者学习使用(请勿商用)!本文档由人工智能吧(QQ群 565128329)整理提供并更多学习分享,若觉得不错请购买印刷版书籍。约不约“天下没有免费的午餐”定理对知识泵进行预设如何征服世界在无知与幻觉之间你能信任的准确度归纳是逆向的演绎掌握治愈癌症的方法20问游戏符号学派第四章 联结学派:大脑如何学习感知器的兴盛与衰亡物理学家用玻璃制作大脑世界上最重要的曲线攀登超空间里的高峰感知器的复仇一个完整的细胞模型大脑的更深处第五章 进化学派:自然的学习算法达尔文的算法探索:利用困境程序的适者生存法则性有何用先天与后天谁学得最快,谁就会赢第六章 贝叶斯学派:在贝叶斯教堂里统治世界的定理所有模型都是错的,但有些却有用从《尤金·奥涅金》到Siri所有东西都有关联,但不是直接关联推理问题掌握贝叶斯学派的方法马尔可夫权衡证据逻辑与概率:一对不幸的组合第七章 类推学派:像什么就是什么完美另一半维数灾难空中蛇灾爬上梯子起床啦第八章 无师自通物以类聚,人以群分发现数据的形状拥护享乐主义的机器人熟能生巧学会关联第九章 解开迷惑万里挑一终极算法之城马尔科夫逻辑网络从休谟到你的家用机器人行星尺度机器学习医生马上来看你第十章 建立在机器学习之上的世界性、谎言和机器学习数码镜子充满模型的社会分享与否?方式、地点如何?神经网络抢了我的工作战争不属于人类谷歌+终极算法=天网?进化的第二部分
上传时间: 2022-05-07
上传用户:
随着人类社会的进步,科学技术的发展日新月异,模拟人脑神经网络的人工神经网络已取得了长足的发展。经过半个多世纪的发展,人工神经网络在计算机科学,人工智能,智能控制等方面得到了广泛的应用。当代社会是一个讲究效率的社会,科技更新领域也是如此。在人工神经网络研究领域,算法的优化显得尤为重要,对提高网络整体性能举足轻重.BP神经网络模型是目前应用最为广泛的一种神经网络模型,对于解决非线性复杂问题具有重要的意义。但是BP神经网络有其自身的一些不足(收敛速度慢和容易陷入局部极小值问题),在解决某些现实问题的时候显得力不从心。针对这个问题,本文利用遗传算法的并行全局搜索的优势,能够弥补BP网络的不足,为解决大规模复杂问题提供了广阔的前景。本文将遗传算法与BP网络有机地结合起来,提出了一种新的网络结构,在稳定性、学习性和效率方面都有了很大的提高。基于以上的研究目的,本文首先设计了BP神经网络结构,在此基础上,应用遗传算法进行优化,达到了加快收敛速度和全局寻优的效果。本文借助MATLAB平台,对算法的优化内容进行了仿真实验,得出的效果也符合期望值,实现了对BP算法优化的目的。关键词:生物神经网络:人工神经网络;BP网络;遗传算法;仿真随着电子计算机的问世及发展,人们试图去了解人的大脑,进而构造具有人类思维的智能计算机。在具有人脑逻辑推理延伸能力的计算机战胜人类棋手的同时,引发了人们对模拟人脑信息处理的人工神经网络的研究。1.1研究背景人工神经网络(Artificial Noural Networks,ANN)(注:简称为神经网络),是一种数学算法模型,能够对信息进行分布式处理,它模仿了动物的神经网络,是对动物神经网络的一种具体描述。这种网络依赖系统的复杂程度,通过调节内部大量节点之间的关系,最终实现信息处理的目的。人工神经网络可以通过对输入输出数据的分析学习,掌握输入与输出之间的潜在规则,能够对新数据进行分析计算,推算出输出结果,因为人工神经网络具有自适应和自学习的特性,这种学习适应的过程被称为“训练"。
上传时间: 2022-06-16
上传用户:jiabin
论文首先研究了基于Har-like特征和Adaboost分类器的目标车辆探测算法原理和参数设置,并利用车载摄像头采集真实道路车辆图像,建立车辆样本数据库,训练车辆分类器,实现对道路车辆的探测,并对探测效果进行量化分析。针对在车辆探测过程中误检率较高、探测不连续以及检测框不稳定的现象,对基于无迹卡尔曼滤波器的车辆跟踪算法进行了研究,建立了车辆相对运动模型,对真实道路交通场景中的多目标车辆进行探测与跟踪,并对跟踪算法对探测性能提升的效果和原因进行了深入分析。在单目测距中,针对一般测距算法受车辆俯仰角和摄像头畸变影响很大的缺点,利用PreScan仿真软件,对车辆测距算法进行了改进,提山了一个同时考虑车辆俯仰角和摄像头畸变等参数的测距模型,以及一种将摄像头内参与外参分开标定的新方法,最后利用场地实验利真实道路交通场景对模型的测距精度、参数灵敏度进行量化分析。研究了仅利用图像信息估算车辆间碰撞时间的方法,利用PreScan仿真软件,对车辆碰撞时间估算算法进行了改进,建立了一个考虑车间相对加速度碰撞时间估算模型,最后,利用真实道路交通视频对算法进行验证和分析。最后,介绍了利用仿真软件辅助ADAS开发的方法,在虚拟的开发环境中建立了以真实摄像头物理参数为依据的摄像头仿真模型、交通场景,实现了对单目测距和碰撞时间估算算法的验证和改进。实验结果表明,论文中所建立的算法表现出良好的性能,所构建的基于PreScan的仿真平台能有效地提高算法的开发效率.
上传时间: 2022-06-21
上传用户:d1997wayne
《现代永磁同步电机控制原理及MATLAB仿真》的随书matlab仿真文件,囊括了各种电机的不同控制算法的仿真模型,对于电机控制的算法理解十分有用。主要内容包括三相永磁同步电机的数学建模及矢量控制技术、三相电压源逆变器PWM 技术、三相永磁同步电机的直接转矩控制、三相永磁同步电机的无传感器控制技术、六相永磁同步电机的数学建模及矢量控制技术、六相电压源逆变器WM 技术和五相永磁同步电机的数学建模及矢量控制技术等。每种控制技术都通过了MATLAB 仿真建模并进行了仿真分析。
上传时间: 2022-06-30
上传用户:
《现代通信系统盲处理技术新进展---基于智能算法》主要由以下8章组成: 第1章简要介绍无线通信系统的结构和发展概况,以及其盲处理算法的相关知识。第2章介绍人工神经网络及相应知识,从BP神经网络若手研究盲处理问题,同时给出复数域BP神经网络的信号盲处理方法和该类方法的优缺点说明。在第3章中介绍智能体的概念,并给出基于多智能体系统的盲处理方法。第4章介绍基于支持向量机框架下的盲处理算法,介绍支持向批机的原理,给出基于ε- 支持向量回归机的信道估计新方法,并介绍基千支持向批回归方法的MPSK和QAM的盲信号处理方法,然后引入星座匹配误差函数,并根据线性支持向搅回归和有序风险最小化原则,由恒模和星座匹配误差函数联合组成的新经验风险项构造一个新的代价函数,进而通过迭代求解优化问题获得均衡器。第5章介绍神经动力学和反馈神经网络的相关知识,特别地从神经动力学角度论述连续反馈神经网络可有效飞作的原因,论述反馈神经网络权值矩阵对吸引子和相轨迹的影响。并给出如何根据系统接收信号与发送信号之间的子空间关系,构造一个适用于现代通信系统中的盲检测的特定性能函数和优化问题。第6章分别展示如何基于连续多阈值神经元Hopfield网络模型实现通信信号盲处理的理论和方法,针对多相制信号的特点给出两种连续相位多阙值激励函数形式,并分析讨论该两类激励函数参数的选择、分别给出连续多阈值神经元 Hopfield 网络工作于同步和异步模式下的新能队函数及其相关证明。介绍采用幅相连续激励法解决稀疏QAM 信号的盲检测思路,并针对 QAM 信号的特点,分别给出连续幅度和相位多阙值激励函数形式,分析讨论该类激励函数的特点。第7章则电在从另一个角度提出采用同相正交振幅连续激励法解决密集QAM信号盲检测方法。介绍如何从激励函数角度分析放大因子选择的范围;给出该特定问题的同步和异步运行模式下的新能量函数形式;并证明和分析所设计的能量函数部分定理;介绍在基于反馈神经网络的信号盲处理方法这一研究课题中发现的几类现象,包括当信号的统计信息缺失或失真情况下,连续多阈值神经元反馈神经网络的盲检测能力:通用高阶QMA的激励函数被使用作为低阶QAM信号盲检测问题时的适用性......
上传时间: 2022-07-09
上传用户: