/****************temic*********t5557***********************************/ #include <at892051.h> #include <string.h> #include <intrins.h> #include <stdio.h> #define uchar unsigned char #define uint unsigned int #define ulong unsigned long //STC12C2051AD的SFR定义 sfr WDT_CONTR = 0xe1;//stc2051的看门狗?????? /**********全局常量************/ //写卡的命令 #define write_command0 0//写密码 #define write_command1 1//写配置字 #define write_command2 2//密码写数据 #define write_command3 3//唤醒 #define write_command4 4//停止命令 #define TRUE 1 #define FALSE 0 #define OK 0 #define ERROR 255 //读卡的时间参数us #define ts_min 250//270*11.0592/12=249//取近似的整数 #define ts_max 304//330*11.0592/12=304 #define t1_min 73//90*11.0592/12=83:-10调整 #define t1_max 156//180*11.0592/12=166 #define t2_min 184//210*11.0592/12=194 #define t2_max 267//300*11.0592/12=276 //***********不采用中断处理:采用查询的方法读卡时关所有中断****************/ sbit p_U2270B_Standby = P3^5;//p_U2270B_Standby PIN=13 sbit p_U2270B_CFE = P3^3;//p_U2270B_CFE PIN=6 sbit p_U2270B_OutPut = P3^7;//p_U2270B_OutPut PIN=2 sbit wtd_sck = P1^7;//SPI总线 sbit wtd_si = P1^3; sbit wtd_so = P1^2; sbit iic_data = P1^2;//lcd IIC sbit iic_clk = P1^7; sbit led_light = P1^6;//测试绿灯 sbit led_light1 = P1^5;//测试红灯 sbit led_light_ok = P1^1;//读卡成功标志 sbit fengmingqi = P1^5; /***********全局变量************************************/ uchar data Nkey_a[4] = {0xA0, 0xA1, 0xA2, 0xA3};//初始密码 //uchar idata card_snr[4]; //配置字 uchar data bankdata[28] = {1,2,3,4,5,6,7,1,2,3,4,5,6,7,1,2,3,4,5,6,7,1,2,3,4,5,6,7}; //存储卡上用户数据(1-7)7*4=28 uchar data cominceptbuff[6] = {1,2,3,4,5,6};//串口接收数组ram uchar command; //第一个命令 uchar command1;// //uint temp; uchar j,i; uchar myaddr = 8; //uchar ywqz_count,time_count; //ywqz jishu: uchar bdata DATA; sbit BIT0 = DATA^0; sbit BIT1 = DATA^1; sbit BIT2 = DATA^2; sbit BIT3 = DATA^3; sbit BIT4 = DATA^4; sbit BIT5 = DATA^5; sbit BIT6 = DATA^6; sbit BIT7 = DATA^7; uchar bdata DATA1; sbit BIT10 = DATA1^0; sbit BIT11 = DATA1^1; sbit BIT12 = DATA1^2; sbit BIT13 = DATA1^3; sbit BIT14 = DATA1^4; sbit BIT15 = DATA1^5; sbit BIT16 = DATA1^6; sbit BIT17 = DATA1^7; bit i_CurrentLevel;//i_CurrentLevel BIT 00H(Saves current level of OutPut pin of U2270B) bit timer1_end; bit read_ok = 0; //缓存定时值,因用同一个定时器 union HLint { uint W; struct { uchar H;uchar L; } B; };//union HLint idata a union HLint data a; //缓存定时值,因用同一个定时器 union HLint0 { uint W; struct { uchar H; uchar L; } B; };//union HLint idata a union HLint0 data b; /**********************函数原型*****************/ //读写操作 void f_readcard(void);//全部读出1~7 AOR唤醒 void f_writecard(uchar x);//根据命令写不同的内容和操作 void f_clearpassword(void);//清除密码 void f_changepassword(void);//修改密码 //功能子函数 void write_password(uchar data *data p);//写初始密码或数据 void write_block(uchar x,uchar data *data p);//不能用通用指针 void write_bit(bit x);//写位 /*子函数区*****************************************************/ void delay_2(uint x) //延时,时间x*10us@12mhz,最小20us@12mhz { x--; x--; while(x) { _nop_(); _nop_(); x--; } _nop_();//WDT_CONTR=0X3C;不能频繁的复位 _nop_(); } ///////////////////////////////////////////////////////////////////// void initial(void) { SCON = 0x50; //串口方式1,允许接收 //SCON =0x50; //01010000B:10位异步收发,波特率可变,SM2=0不用接收到有效停止位才RI=1, //REN=1允许接收 TMOD = 0x21; //定时器1 定时方式2(8位),定时器0 定时方式1(16位) TCON = 0x40; //设定时器1 允许开始计时(IT1=1) TH1 = 0xfD; //FB 18.432MHz 9600 波特率 TL1 = 0xfD; //fd 11.0592 9600 IE = 0X90; //EA=ES=1 TR1 = 1; //启动定时器 WDT_CONTR = 0x3c;//使能看门狗 p_U2270B_Standby = 0;//单电源 PCON = 0x00; IP = 0x10;//uart you xian XXXPS PT1 PX1 PT0 PX0 led_light1 = 1; led_light = 0; p_U2270B_OutPut = 1; } /************************************************/ void f_readcard()//读卡 { EA = 0;//全关,防止影响跳变的定时器计时 WDT_CONTR = 0X3C;//喂狗 p_U2270B_CFE = 1;// delay_2(232); //>2.5ms /* // aor 用唤醒功能来防碰撞 p_U2270B_CFE = 0; delay_2(18);//start gap>150us write_bit(1);//10=操作码读0页 write_bit(0); write_password(&bankdata[24]);//密码block7 p_U2270B_CFE =1 ;// delay_2(516);//编程及确认时间5.6ms */ WDT_CONTR = 0X3C;//喂狗 led_light = 0; b.W = 0; while(!(read_ok == 1)) { //while(p_U2270B_OutPut);//等一个稳定的低电平?超时判断? while(!p_U2270B_OutPut);//等待上升沿的到来同步信号检测1 TR0 = 1; //deng xia jiang while(p_U2270B_OutPut);//等待下降沿 TR0 = 0; a.B.H = TH0; a.B.L = TL0; TH0 = TL0 = 0; TR0 = 1;//定时器晚启动10个周期 //同步头 if((324 < a.W) && (a.W < 353)) ;//检测同步信号1 else { TR0 = 0; TH0 = TL0 = 0; goto read_error; } //等待上升沿 while(!p_U2270B_OutPut); TR0 = 0; a.B.H = TH0; a.B.L = TL0; TH0 = TL0 = 0; TR0 = 1;//b.N1<<=8; if(a.B.L < 195);//0.5p else { TR0 = 0; TH0 = TL0 = 0; goto read_error; } //读0~7块的数据 for(j = 0;j < 28;j++) { //uchar i; for(i = 0;i < 16;i++)//8个位 { //等待下降沿的到来 while(p_U2270B_OutPut); TR0 = 0; a.B.H = TH0; a.B.L = TL0; TH0 = TL0 = 0; TR0 = 1; if(t2_max < a.W/*)&&(a.W < t2_max)*/)//1P { b.W >>= 2;//先左移再赋值 b.B.L += 0xc0; i++; } else if(t1_min < a.B.L/*)&&(a.B.L < t1_max)*/)//0.5p { b.W >>= 1; b.B.L += 0x80; } else { TR0 = 0; TH0 = TL0 = 0; goto read_error; } i++; while(!p_U2270B_OutPut);//上升 TR0 = 0; a.B.H = TH0; a.B.L = TL0; TH0 = TL0 = 0; TR0 = 1; if(t2_min < a.W/*)&&(a.W < t2_max)*/)//1P { b.W >>= 2; i++; } else if(t1_min < a.B.L/*a.W)&&(a.B.L < t1_max)*/)//0.5P //else if(!(a.W==0)) { b.W >>= 1; //temp+=0x00; //led_light1=0;led_light=1;delay_2(40000); } else { TR0 = 0; TH0 = TL0 = 0; goto read_error; } i++; } //取出奇位 DATA = b.B.L; BIT13 = BIT7; BIT12 = BIT5; BIT11 = BIT3; BIT10 = BIT1; DATA = b.B.H; BIT17 = BIT7; BIT16 = BIT5; BIT15 = BIT3; BIT14 = BIT1; bankdata[j] = DATA1; } read_ok = 1;//读卡完成了 read_error: _nop_(); } } /***************************************************/ void f_writecard(uchar x)//写卡 { p_U2270B_CFE = 1; delay_2(232); //>2.5ms //psw=0 standard write if (x == write_command0)//写密码:初始化密码 { uchar i; uchar data *data p; p = cominceptbuff; p_U2270B_CFE = 0; delay_2(31);//start gap>330us write_bit(1);//写操作码1:10 write_bit(0);//写操作码0 write_bit(0);//写锁定位0 for(i = 0;i < 35;i++) { write_bit(1);//写数据位1 } p_U2270B_CFE = 1; led_light1 = 0; led_light = 1; delay_2(40000);//测试使用 //write_block(cominceptbuff[4],p); p_U2270B_CFE = 1; bankdata[20] = cominceptbuff[0];//密码存入 bankdata[21] = cominceptbuff[1]; bankdata[22] = cominceptbuff[2]; bankdata[23] = cominceptbuff[3]; } else if (x == write_command1)//配置卡参数:初始化 { uchar data *data p; p = cominceptbuff; write_bit(1);//写操作码1:10 write_bit(0);//写操作码0 write_bit(0);//写锁定位0 write_block(cominceptbuff[4],p); p_U2270B_CFE= 1; } //psw=1 pssword mode else if(x == write_command2) //密码写数据 { uchar data*data p; p = &bankdata[24]; write_bit(1);//写操作码1:10 write_bit(0);//写操作码0 write_password(p);//发口令 write_bit(0);//写锁定位0 p = cominceptbuff; write_block(cominceptbuff[4],p);//写数据 } else if(x == write_command3)//aor //唤醒 { //cominceptbuff[1]操作码10 X xxxxxB uchar data *data p; p = cominceptbuff; write_bit(1);//10 write_bit(0); write_password(p);//密码 p_U2270B_CFE = 1;//此时数据不停的循环传出 } else //停止操作码 { write_bit(1);//11 write_bit(1); p_U2270B_CFE = 1; } p_U2270B_CFE = 1; delay_2(560);//5.6ms } /************************************/ void f_clearpassword()//清除密码 { uchar data *data p; uchar i,x; p = &bankdata[24];//原密码 p_U2270B_CFE = 0; delay_2(18);//start gap>150us //操作码10:10xxxxxxB write_bit(1); write_bit(0); for(x = 0;x < 4;x++)//发原密码 { DATA = *(p++); for(i = 0;i < 8;i++) { write_bit(BIT0); DATA >>= 1; } } write_bit(0);//锁定位0:0 p = &cominceptbuff[0]; write_block(0x00,p);//写新配置参数:pwd=0 //密码无效:即清除密码 DATA = 0x00;//停止操作码00000000B for(i = 0;i < 2;i++) { write_bit(BIT7); DATA <<= 1; } p_U2270B_CFE = 1; delay_2(560);//5.6ms } /*********************************/ void f_changepassword()//修改密码 { uchar data *data p; uchar i,x,addr; addr = 0x07;//block7 p = &Nkey_a[0];//原密码 DATA = 0x80;//操作码10:10xxxxxxB for(i = 0;i < 2;i++) { write_bit(BIT7); DATA <<= 1; } for(x = 0;x < 4;x++)//发原密码 { DATA = *(p++); for(i = 0;i < 8;i++) { write_bit(BIT7); DATA >>= 1; } } write_bit(0);//锁定位0:0 p = &cominceptbuff[0]; write_block(0x07,p);//写新密码 p_U2270B_CFE = 1; bankdata[24] = cominceptbuff[0];//密码存入 bankdata[25] = cominceptbuff[1]; bankdata[26] = cominceptbuff[2]; bankdata[27] = cominceptbuff[3]; DATA = 0x00;//停止操作码00000000B for(i = 0;i < 2;i++) { write_bit(BIT7); DATA <<= 1; } p_U2270B_CFE = 1; delay_2(560);//5.6ms } /***************************子函数***********************************/ void write_bit(bit x)//写一位 { if(x) { p_U2270B_CFE = 1; delay_2(32);//448*11.0592/120=42延时448us p_U2270B_CFE = 0; delay_2(28);//280*11.0592/120=26写1 } else { p_U2270B_CFE = 1; delay_2(92);//192*11.0592/120=18 p_U2270B_CFE = 0; delay_2(28);//280*11.0592/120=26写0 } } /*******************写一个block*******************/ void write_block(uchar addr,uchar data *data p) { uchar i,j; for(i = 0;i < 4;i++)//block0数据 { DATA = *(p++); for(j = 0;j < 8;j++) { write_bit(BIT0); DATA >>= 1; } } DATA = addr <<= 5;//0地址 for(i = 0;i < 3;i++) { write_bit(BIT7); DATA <<= 1; } } /*************************************************/ void write_password(uchar data *data p) { uchar i,j; for(i = 0;i < 4;i++)// { DATA = *(p++); for(j = 0;j < 8;j++) { write_bit(BIT0); DATA >>= 1; } } } /*************************************************/ void main() { initial(); TI = RI = 0; ES = 1; EA = 1; delay_2(28); //f_readcard(); while(1) { f_readcard(); //读卡 f_writecard(command1); //写卡 f_clearpassword(); //清除密码 f_changepassword(); //修改密码 } }
标签: 12345
上传时间: 2017-10-20
上传用户:my_lcs
获取名字判断 然后判断他是不是三次没成功,在用户数据的数据库表中,加个字段 以记录今天的失败登陆次数目! 再加个记录临时时间的字段~~~~~~~~! 当一个用户当天登陆第一次的时候,自动更新时间字段里的时间数据,用语句实现只更新一次,如果时间字段里的数据与服务器系统时间相同就不更新了~~~~~~!《还有就是如果不是当天时间,还要在数据库中的记录数目的字段把数据刷成0,是当天时间就不刷````````!(因为这个时间不是今天的,就等于记录的昨天的失败登陆次数目)》 然后用户没登陆失败一次,找到自己对应的记录数目的字段,如果不为3,就增加+1! 然后页面判断用户登陆页面的时候,找到他的记录数目的字段,判断是不是为3!如果为3便拒绝,不为3通过验证!(进行密码验证) “接到前面《》那里````````!” https://wenku.baidu.com/view/910e4614da38376bae1fae42.html?rec_flag=default 当会员登录后记录其登录时间(年、月、日、时、分、秒,按你需要的精确度来定)。下次会员登录的时候就将这个时间和他当前时间对比,如果小于24小时就提示用户说一天只能登录一次,然后退出,如果大于24小时,则将当前时间记录替换原来的时间,并让用户登录。 步骤如下: 1、在用户表里增加一个记录用户上次登录时间的字段。 2、用户登录后则对当前时间与数据库里用户上次登录时间进行比较。 3、对比较结果进行逻辑判断(是否大于24小时)从而决定接下来的操作。 比较结果>24小时,则让其登录。比较结果<24小时,则不让其登录。如果是等于的话就根据你自己的需要来编写代码了。
标签: 怎样限制会员登录的次数
上传时间: 2019-11-12
上传用户:aaaaaab
支持多种固网和移动接入方式,使得现存的语音和数据网络可以互联互通。由于其灵活多样的业务特性,使得IMS系统建设在电力行业中得到了迅速发展。针对IMS自身的特点,结合现有行政交换系统现状,需要将传统电话申请、故障报修等业务与电子工单结合,工单数据与IMS系统配置接口进行对接,建立系统化、电子化的故障处理流程,并且实现IMS系统配置的自动化、智能化。
上传时间: 2020-12-03
上传用户:
温度、湿度检测在工农业生产、医学研究等科研工作中具有非常重要的地位。温度、湿度是科研工作中相当重要的参数,如何准确地测量、并且进行数据分析、统计,对科研工作的开展和科研结果的发布有着极其重要的影响。本论文就实际工作需要,解决工作中的实际问题,希望能够利用虚拟仪器构建一套远程温、湿度控制系统。文中首先简要介绍虚拟仪器的概念、特点,概述了虚拟仪器的现状及其未来的发展,并将它与传统的仪器进行了比较,突出了虚拟仪器的优点,同时也涉及了目前应用最广泛,最具有优势的虚拟仪器编程软件LabVIEW的特点及编程方法。 为了能够构建一套稳定可靠的温、湿度控制系统,确保实验数据的准确性和统计的方便与合理,本文重点介绍利用LabVIEW语言开发出一套温、湿度控制系统,该系统以铂电阻作为温度传感器;电容式传感器作为湿度敏感元件,采用美国的NI公司的数据采集卡USB-6008采集温度、湿度信号,通过Internet网络可以实时的监测和控制温、湿度的变化,通过对采集到的数据进行分析和处理,实现数据的报表打印、数据的远程共享,温、湿度的上、下限报警等等。 利用温、湿度传感器和数据采集卡检测温室内温度和湿度参数变化,实现了实验数据的自动采集。针对温室控制过程中温度和湿度存在耦合问题,运用了模糊解耦控制。在模糊解耦控制过程中,根据长期的实践经验总结,制定出了较为合理的温湿度隶属度函数表和模糊解耦控制规则输出表。在去模糊化的过程中,为了便于软件实现,根据Mamdani型模糊推理算法用MATLAB语言编写出了模糊决策表的输出程序。采用目前国际上流行的虚拟仪器技术,进行了计算机测控系统的设计,与传统测试中采用的多参数分别用单个仪器检测、数据单独汇总处理的方式,或基于单片机的数据采集处理系统相比,虚拟仪器技术的应用大大提高了检测和控制的精度,提高了数据处理的速度,并增强了系统的通用性、可靠性、可维护性和可扩展性。采用LabVIEW虚拟仪器开发平台和模块化设计方法,实现了环境参数的实时获取、采集信息的实时显示、控制信号的准确输出及数据的自动处理,减少了人为干预,增加了测控过程的稳定性,避免人为的读数误差和计算误差。在系统试验研究阶段,对系统温湿度参数的自动采集进行试验设计和试验结果分析,从数...
上传时间: 2022-05-25
上传用户:
|- 数据科学速查表 - 0 B|- 迁移学习实战 - 0 B|- 零起点Python机器学习快速入门 - 0 B|- 《深度学习入门:基于Python的理论与实现》高清中文版PDF+源代码 - 0 B|- 《Python生物信息学数据管理》中文版PDF+英文版PDF+源代码 - 0 B|- 《Python深度学习》2018中文版pdf+英文版pdf+源代码 - 0 B|- 《Python编程:从入门到实践》中文版+源代码 - 0 B|- stanford machine learning - 0 B|- Python语言程序设计2018版电子教案 - 0 B|- Python网络编程第三版 (原版+中文版+源代码) - 0 B|- Python机器学习实践指南(中文版带书签)、原书代码、数据集 - 0 B|- python官方文档 - 0 B|- Python编程(第4版 套装上下册) - 0 B|- PyQt5快速开发与实战(pdf+源码) - 0 B|- linux - 0 B|- 征服PYTHON-语言基础与典型应用.pdf - 67.40 MB|- 与孩子一起学编程_中文版_详细书签.pdf - 69.10 MB|- 用Python做科学计算.pdf - 6.10 MB|- 用Python写网络爬虫.pdf - 9.90 MB|- 用Python进行自然语言处理(中文翻译NLTK).pdf - 4.40 MB|- 像计算机科学家那样思考 Python中文版第二版.pdf - 712.00 kB|- 网络爬虫-Python和数据分析.pdf - 6.90 MB|- 图解机器学习.pdf - 59.40 MB|- 凸优化.pdf - 5.70 MB|- 数据挖掘导论.pdf - 2.50 MB|- 数据科学入门.pdf - 13.30 MB|- 数据结构与算法__Python语言描述_裘宗燕编著_北京:机械工业出版社_,_2016.01_P346.pdf - 74.30 MB|- 神经网络与深度学习.pdf - 92.60 MB|- 深入Python3...
标签: python
上传时间: 2022-06-06
上传用户:
摘要:现代电机控制的发展在提高性能、降低损耗、减少成本和其它不断出现的新的技术指标及特殊应用上的要求越来越高,因此有许多新的复杂的控制算法产生,交流电机有许多直流电机所没有的优点,但是寸于交流电机的控制相对直流电机更为困难,而DSP的应用使得交流电机控制系统无论是在结构复杂程度、成本和效率上都有很大改观。本文结合了交流感应电机的速度控制中较为有效的控制方法即磁场导向控制(FOC)理论和T1公司的DSP控制器TMS320LF2407介绍了DSP在电机闭环控制中的应用。关键词:电机控制磁场定向理论DSP矢量控制1引言交流感应电机因为其很多优点如结构牢固,运行稳健可靠,成本低廉和高效率等而被广泛使用,但是交流电机的可控制性不如直流电机,而在很多应用中有如精确定位、转距控制、速度控制等要求。为了实现这些功能和提高控制精度,需要采用闭环控制系统和采用较为复杂、有效的控制算法,这些复杂的控制方法中包含了大量的数据运算及系统的适时性要求,对微处理器运算能力和速度要求更高。传统方法在成本和性能上已经很难满足人们的要求。随着电子技术的发展,数字信号处理器的(DSP)应用解决了处理器的运算能力和速度问题。一些电机控制专用DSP如TI的TMS320LF2407,其中集成了电机控制的许多必要的外围器件,如模数转换器、脉宽调制发生器和一些专用逻辑电路,给开发更高性能价格比的控制系统带来极大方便。
标签: dsp foc控制算法 交流电机调速控制系统
上传时间: 2022-06-26
上传用户:
eeworm.com VIP专区 单片机源码系列 36资源包含以下内容:1. STM32实现定时加热.rar2. MDK412破解版下载及说明.doc3. [单片机开发环境Keil6.12和ADS1.2].KeilC51v612.rar4. STM32控制倒立摆.rar5. 基于MSP430内嵌温度传感器的温度报警系统.doc6. 用单片机做的小编程-心形灯.rar7. 80C51单片机原理与应用.pdf8. 如何学习单片机(基于ARM平台).docx9. 51-AVR(二合一)单片机开发板电路图.pdf10. LT48UXP_900_WIN7.rar11. MSP430学习笔记.pdf12. 基于单片机的智能台灯设计.rar13. MSP430定时器的使用.pdf14. 基于单片机的温度采集记录系统.rar15. ad574程序.doc16. 基于单片的智能温度报警系统.rar17. 单片机轻松入门.pdf18. HOT-51_PCB全图.pdf19. 法拉电容 组合型5.5V系列.doc20. keil c51chbook.pdf21. 51开发板(原理图).pdf22. 数字闹钟的设计.doc23. JN5139最小系统.pdf24. AT89S52芯片简介.rar25. 18f4520数据手册.pdf26. 基于单片机AT89C2051的九路多功能智力竞赛抢答器的设计.pdf27. 基于单片机和DS18B20的温度计的设计.rar28. AT90CAN128资料.pdf29. 自动加料机控制系统资料.rar30. C语言函数库.pdf31. stm32介绍.pdf32. 控制数码管.rar33. 自制实用多功能编程器.rar34. STC12C5A60S2数据资料.zip35. Keil-C中使用STCMCU的第二组DPTR的方法.zip36. 单片机控制系统的抗干扰设计.rar37. 单片机原理及应用基础知识.ppt38. STC15F2K60S2系列学习板.RAR39. 8FX开发环境Softune使用说明(中文).pdf40. MCS-51单片机中断系统.ppt41. 红外代码.rar42. 8fx工具介绍.pdf43. MCS-51系列单片机中断系统.ppt44. msp430单片机驱动诺基亚5110液晶程序.zip45. 8fx单片机片上资源.pdf46. 并行I/O扩展技术.ppt47. 51端口的结构及工作原理.pdf48. 富士通8位单片机应用手册.pdf49. 串行通信技术.ppt50. 步进电机细分.pdf51. 循迹避障小车方案.docx52. 单片机应用系统设计资料.ppt53. ICCAVR 软件中文说明书.pdf54. I/O设备接口技术.ppt55. C语言作单片机初级教程.pdf56. 各种电容的作用.doc57. 8051单片机C语言彻底应用.pdf58. 基于51单片机简易温度显示器汇编程序·.doc59. 凌阳_61板傻瓜书.pdf60. C语言函数大全.pdf61. 跟我学SPCE061A单片机.pdf62. 51寄存器手册速查.doc63. STC下载软件(STC官方烧录工具).rar64. 单片机原理及应用(C语言版)9.ppt65. 用89c51做的几个好作品.rar66. 单片机显示频率模块设计.doc67. 51单片机的10大作品,都不是盖的.pdf68. 步进电机原理.pdf69. FRTOS移植到PIC.pdf70. 基于AT89C52的遥控电扇电路图设计.rar71. 51单片机串口通信.ppt72. STC-ISP(STC官方烧录工具).rar73. 智能小车实训教学大纲.doc74. 万年历和闹钟的设计.doc75. 详细的舵机控制原理资料.pdf76. SAM88-RCRI指令集.pdf77. 80C51_HARDWARE_1.pdf78. MSP430系列C编译器编程指南.pdf79. 远程控制系统的现场安装与调试.pdf80. 单片机以太网接口的实现.pdf81. Proteus 仿真实例.rar82. 电子设计大赛《数字示波器》作品解析.pdf83. 指针总结.pdf84. s3f9454_中文.pdf85. 电子设计大赛_数字存储示波器设计.pdf86. AVR单片机选型.pdf87. 12864使用手册.pdf88. 2011年全国电子设计竞赛培训.pdf89. 基于51单片机的智能快速充电器设计.doc90. msp430红外串口通信.rar91. DS1302 DS18B20 LCD1602经典万年历 高低温报警.doc92. 单片机资料宝典.exe93. STM32芯片引脚图.pdf94. 机器人控制电子学_做机器人必要资料.rar95. AT24c02串行口读写.pdf96. STM32常用的基本资料.doc97. [PIC项目实战:基于PIC18].Advanced.PIC.Microcontroller.Projects.in.C.pdf98. MODBUS通讯规约文本.pdf99. 80C51_PROG_GUIDE_1.pdf100. [电动机的单片机控制].王晓明.扫描版.pdf
上传时间: 2013-04-15
上传用户:eeworm
主要程序代码有 单片机与LED数码管接口 LED大屏幕显示器和接口 字符LCD 液晶显示和接口 单片机与键盘接口 A/D转换器接口 D/A 转换器接口 串行通信基础 MCS-51的串行接口 MCS-51单片机双机通信 RS-232C串行通信总线标准及其接口 存储器的扩展 串行口的I/O口扩展 数字钟的设计与制作 单片机温度检测记录系统
上传时间: 2013-08-01
上传用户:shwjl
软件无线电(Software Defined Radio)是无线通信系统收发信机的发展方向,它使得通信系统的设计者可以将主要精力集中到收发机的数字处理上,而不必过多关注电路实现。在进行数字处理时,常用的方案包括现场可编程门阵列(FPGA)、数字信号处理器(DSP)和专用集成电路(ASIC)。FPGA以其相对较低的功耗和相对较低廉的成本,成为许多通信系统的首先方案。正是在这样的前提下,本课题结合软件无线电技术,研究并实现基于FPGA的数字收发信机。 @@ 本论文主要研究了发射机和接收机的结构和相关的硬件实现问题。首先,从理论上对发射机和接收机结构进行研究,找到收发信机设计中关键问题。其次,在理论上有深刻认识的基础上,以FPGA为手段,将反馈控制算法、反馈补偿算法和前馈补偿算法落实到硬件电路上。同步一直是数字通信系统中的关键问题,它也是本文的研究重点。本文在研究了已有各种同步方法的基础上,设计了一种新的同步方法和相应的接收机结构,并以硬件电路将其实现。最后,针对所设计的硬件系统,本文还进行了充分的硬件系统测试。硬件测试的各项数据结果表明系统设计方案是可行的,基本实现了数字中频收发机系统的设计要求。 @@ 本文中发射机系统是以Altera公司EP2C70F672C6为硬件平台,接收机系统以Altera公司EP2S180F1020C3为硬件平台。收发系统均是在Ouartus Ⅱ 8.0环境下,通过编写Verilog HDL代码和调用Altera IP core加以实现。在将设计方案落实到硬件电路实现之前,各种算法均使用MATLAB进行原理仿真,并在MATLAB仿真得到正确结果的基础上,使用Quartus Ⅱ 8.0中的功能仿真工具和时序仿真工具进行了前仿真和后仿真。所有仿真结果无误后,可下载至硬件平台进行调试,通过Quartus Ⅱ 8.0中集成的SignalTap逻辑分析仪,可以实时观察电路中各点信号的变化情况,并结合示波器和频谱仪,得到硬件测试结果。 @@关键词:SDR;数字收发机;FPGA;载波同步;符号同步
上传时间: 2013-04-24
上传用户:diaorunze
近年来,瓦斯事故在煤矿生产事故中所占比例越来越高,给矿工的生产生活带来了极大的灾难,必须加强对瓦斯的监测监控,避免瓦斯爆炸事故。因此对瓦斯气体进行快速、实时检测对于煤矿安全生产及环境保护有特别重要的意义。便携式甲烷检测报警仪是各国应用最早最普遍的一种甲烷浓度检测仪表,可随时检测作业场所的甲烷浓度,也可使用甲烷传感器对甲烷浓度进行连续实时地监测。大体上当前应用的便携式甲烷检测仪器,按检测原理分为光学甲烷检测仪、热导型甲烷检测仪、热催化型甲烷检测报警仪、气敏半导体式甲烷检测仪等几种。 光干涉甲烷检测仪性能稳定、使用寿命长,测量准确,是我国煤矿主要的便携式甲烷检测仪器。但现有的光干涉甲烷检测仪存在自动化程度低、测量方法繁琐、读数不直观,人为误差较大、不能存储数据等缺点。为此本文在干涉型甲烷检测仪实现的原理上提出利用线阵型电荷耦合器件(CCD)对干涉条纹进行非接触式的自动测量,获得条纹信息,通过CCD驱动、高速模数转换、数据采集等关键技术,实现了干涉条纹位移的精确测量,由单片机对量化后的测量信号进行智能处理,数字化显示甲烷含量的测量结果。 光干涉甲烷检测的关键是对干涉条纹中白基线以及黑色条纹位置的检测,本设计采用线阵CCD成像获取条纹信息判别其位置。CCD是一种性能独特的半导体光电器件,近年来在摄像、工业检测等科技领域里得到了广泛的应用。将CCD技术应用于位置测量可以实现高精度和非接触测量的要求;运用FPGA实现CCD芯片的驱动具有速度快、稳定高等优点:模数转换之后的数据没有采用专用存储芯片进行存储,而采用FPGA硬件开发平台和Verilog HDL硬件描述语言编写代码实现数据采集模块系统,同时提高数据采集精准度,既降低成本又提高了存储效率。 本文设计的新系统使用方便、精度高、数据可储存,克服了传统光干涉甲烷检测仪的缺点,技术指标和功能都得到较大改善。
上传时间: 2013-06-08
上传用户:jogger_ding