本文介绍了一种基于AVR单片机的数字胃肠造影系统光圈控制器的设计和实现。该控制器以单片机为核心,以PID控制理论为思想,通过外围硬件电路来达到控制目的。通过串行端口实时调整光圈大小,该光圈控制器具有响应速度快、控制精度高和稳定性好等特点。在实际运行中效果良好。
上传时间: 2013-10-20
上传用户:zsjinju
摘 要:能够实现抢答器功能的方式有多种,可以采用前期的模拟电路、数字电路或模拟与数字电路相结合的方式。近年来随着科技的飞速发展,单片机的应用正在不断深入,同时带动传统控制检测日新月异更新。介绍一种利用微电脑芯片作为核心部件进行逻辑控制及信号产生的单片机技术和C语言编程设计的9路多功能智力竞赛抢答器。关键词:PLC;单片机;抢答器;设计
上传时间: 2013-11-15
上传用户:pzw421125
MSP430系列flash型超低功耗16位单片机MSP430系列单片机在超低功耗和功能集成等方面有明显的特点。该系列单片机自问世以来,颇受用户关注。在2000年该系列单片机又出现了几个FLASH型的成员,它们除了仍然具备适合应用在自动信号采集系统、电池供电便携式装置、超长时间连续工作的设备等领域的特点外,更具有开发方便、可以现场编程等优点。这些技术特点正是应用工程师特别感兴趣的。《MSP430系列FLASH型超低功耗16位单片机》对该系列单片机的FLASH型成员的原理、结构、内部各功能模块及开发方法与工具作详细介绍。MSP430系列FLASH型超低功耗16位单片机 目录 第1章 引 论1.1 MSP430系列单片机1.2 MSP430F11x系列1.3 MSP430F11x1系列1.4 MSP430F13x系列1.5 MSP430F14x系列第2章 结构概述2.1 引 言2.2 CPU2.3 程序存储器2.4 数据存储器2.5 运行控制2.6 外围模块2.7 振荡器与时钟发生器第3章 系统复位、中断及工作模式3.1 系统复位和初始化3.1.1 引 言3.1.2 系统复位后的设备初始化3.2 中断系统结构3.3 MSP430 中断优先级3.3.1 中断操作--复位/NMI3.3.2 中断操作--振荡器失效控制3.4 中断处理 3.4.1 SFR中的中断控制位3.4.2 中断向量地址3.4.3 外部中断3.5 工作模式3.5.1 低功耗模式0、1(LPM0和LPM1)3.5.2 低功耗模式2、3(LPM2和LPM3)3.5.3 低功耗模式4(LPM4)22 3.6 低功耗应用的要点23第4章 存储空间4.1 引 言4.2 存储器中的数据4.3 片内ROM组织4.3.1 ROM 表的处理4.3.2 计算分支跳转和子程序调用4.4 RAM 和外围模块组织4.4.1 RAM4.4.2 外围模块--地址定位4.4.3 外围模块--SFR4.5 FLASH存储器4.5.1 FLASH存储器的组织4.5.2 FALSH存储器的数据结构4.5.3 FLASH存储器的控制寄存器4.5.4 FLASH存储器的安全键值与中断4.5.5 经JTAG接口访问FLASH存储器39第5章 16位CPU5.1 CPU寄存器5.1.1 程序计数器PC5.1.2 系统堆栈指针SP5.1.3 状态寄存器SR5.1.4 常数发生寄存器CG1和CG25.2 寻址模式5.2.1 寄存器模式5.2.2 变址模式5.2.3 符号模式5.2.4 绝对模式5.2.5 间接模式5.2.6 间接增量模式5.2.7 立即模式5.2.8 指令的时钟周期与长度5.3 指令组概述5.3.1 双操作数指令5.3.2 单操作数指令5.3.3 条件跳转5.3.4 模拟指令的简短格式5.3.5 其他指令第6章 硬件乘法器6.1 硬件乘法器6.2 硬件乘法器操作6.2.1 无符号数相乘(16位×16位、16位×8位、8位×16位、8位×8位)6.2.2 有符号数相乘(16位×16位、16位×8位、8位×16位、8位×8位)6.2.3 无符号数乘加(16位×16位、16位×8位、8位×16位、8位×8位)6.2.4 有符号数乘加(16位×16位、16位×8位、8位×16位、8位×8位)6.3 硬件乘法器寄存器6.4 硬件乘法器的软件限制6.4.1 寻址模式6.4.2 中断程序6.4.3 MACS第7章 基础时钟模块7.1 基础时钟模块7.2 LFXT1与XT27.2.1 LFXT1振荡器7.2.2 XT2振荡器7.2.3 振荡器失效检测7.2.4 XT振荡器失效时的DCO7.3 DCO振荡器7.3.1 DCO振荡器的特性7.3.2 DCO调整器7.4 时钟与运行模式7.4.1 由PUC启动7.4.2 基础时钟调整7.4.3 用于低功耗的基础时钟特性7.4.4 选择晶振产生MCLK7.4.5 时钟信号的同步7.5 基础时钟模块控制寄存器7.5.1 DCO时钟频率控制7.5.2 振荡器与时钟控制寄存器7.5.3 SFR控制位第8章 输入输出端口8.1 引 言8.2 端口P1、P28.2.1 P1、P2的控制寄存器8.2.2 P1、P2的原理8.2.3 P1、P2的中断控制功能8.3 端口P3、P4、P5和P68.3.1 端口P3、P4、P5和P6的控制寄存器8.3.2 端口P3、P4、P5和P6的端口逻辑第9章 看门狗定时器WDT9.1 看门狗定时器9.2 WDT寄存器9.3 WDT中断控制功能9.4 WDT操作第10章 16位定时器Timer_A10.1 引 言10.2 Timer_A的操作10.2.1 定时器模式控制10.2.2 时钟源选择和分频10.2.3 定时器启动10.3 定时器模式10.3.1 停止模式10.3.2 增计数模式10.3.3 连续模式10.3.4 增/减计数模式10.4 捕获/比较模块10.4.1 捕获模式10.4.2 比较模式10.5 输出单元10.5.1 输出模式10.5.2 输出控制模块10.5.3 输出举例10.6 Timer_A的寄存器10.6.1 Timer_A控制寄存器TACTL10.6.2 Timer_A寄存器TAR10.6.3 捕获/比较控制寄存器CCTLx10.6.4 Timer_A中断向量寄存器10.7 Timer_A的UART应用 第11章 16位定时器Timer_B11.1 引 言11.2 Timer_B的操作11.2.1 定时器长度11.2.2 定时器模式控制11.2.3 时钟源选择和分频11.2.4 定时器启动11.3 定时器模式11.3.1 停止模式11.3.2 增计数模式11.3.3 连续模式11.3.4 增/减计数模式11.4 捕获/比较模块11.4.1 捕获模式11.4.2 比较模式11.5 输出单元11.5.1 输出模式11.5.2 输出控制模块11.5.3 输出举例11.6 Timer_B的寄存器11.6.1 Timer_B控制寄存器TBCTL11.6.2 Timer_B寄存器TBR11.6.3 捕获/比较控制寄存器CCTLx11.6.4 Timer_B中断向量寄存器第12章 USART通信模块的UART功能12.1 异步模式12.1.1 异步帧格式12.1.2 异步通信的波特率发生器12.1.3 异步通信格式12.1.4 线路空闲多机模式12.1.5 地址位多机通信格式12.2 中断和中断允许12.2.1 USART接收允许12.2.2 USART发送允许12.2.3 USART接收中断操作12.2.4 USART发送中断操作12.3 控制和状态寄存器12.3.1 USART控制寄存器UCTL12.3.2 发送控制寄存器UTCTL12.3.3 接收控制寄存器URCTL12.3.4 波特率选择和调整控制寄存器12.3.5 USART接收数据缓存URXBUF12.3.6 USART发送数据缓存UTXBUF12.4 UART模式,低功耗模式应用特性12.4.1 由UART帧启动接收操作12.4.2 时钟频率的充分利用与UART的波特率12.4.3 多处理机模式对节约MSP430资源的支持12.5 波特率计算 第13章 USART通信模块的SPI功能13.1 USART同步操作13.1.1 SPI模式中的主模式13.1.2 SPI模式中的从模式13.2 中断与控制功能 13.2.1 USART接收/发送允许位及接收操作13.2.2 USART接收/发送允许位及发送操作13.2.3 USART接收中断操作13.2.4 USART发送中断操作13.3 控制与状态寄存器13.3.1 USART控制寄存器13.3.2 发送控制寄存器UTCTL13.3.3 接收控制寄存器URCTL13.3.4 波特率选择和调制控制寄存器13.3.5 USART接收数据缓存URXBUF13.3.6 USART发送数据缓存UTXBUF第14章 比较器Comparator_A14.1 概 述14.2 比较器A原理14.2.1 输入模拟开关14.2.2 输入多路切换14.2.3 比较器14.2.4 输出滤波器14.2.5 参考电平发生器14.2.6 比较器A中断电路14.3 比较器A控制寄存器14.3.1 控制寄存器CACTL114.3.2 控制寄存器CACTL214.3.3 端口禁止寄存器CAPD14.4 比较器A应用14.4.1 模拟信号在数字端口的输入14.4.2 比较器A测量电阻元件14.4.3 两个独立电阻元件的测量系统14.4.4 比较器A检测电流或电压14.4.5 比较器A测量电流或电压14.4.6 测量比较器A的偏压14.4.7 比较器A的偏压补偿14.4.8 增加比较器A的回差第15章 模数转换器ADC1215.1 概 述15.2 ADC12的工作原理及操作15.2.1 ADC内核15.2.2 参考电平15.3 模拟输入与多路切换15.3.1 模拟多路切换15.3.2 输入信号15.3.3 热敏二极管的使用15.4 转换存储15.5 转换模式15.5.1 单通道单次转换模式15.5.2 序列通道单次转换模式15.5.3 单通道重复转换模式15.5.4 序列通道重复转换模式15.5.5 转换模式之间的切换15.5.6 低功耗15.6 转换时钟与转换速度15.7 采 样15.7.1 采样操作15.7.2 采样信号输入选择15.7.3 采样模式15.7.4 MSC位的使用15.7.5 采样时序15.8 ADC12控制寄存器15.8.1 控制寄存器ADC12CTL0和ADC12CTL115.8.2 转换存储寄存器ADC12MEMx15.8.3 控制寄存器ADC12MCTLx15.8.4 中断标志寄存器ADC12IFG.x和中断允许寄存器ADC12IEN.x15.8.5 中断向量寄存器ADC12IV15.9 ADC12接地与降噪第16章 FLASH型芯片的开发16.1 开发系统概述16.1.1 开发技术16.1.2 MSP430系列的开发16.1.3 MSP430F系列的开发16.2 FLASH型的FET开发方法16.2.1 MSP430芯片的JTAG接口16.2.2 FLASH型仿真工具16.3 FLASH型的BOOT ROM16.3.1 标准复位过程和进入BSL过程16.3.2 BSL的UART协议16.3.3 数据格式16.3.4 退出BSL16.3.5 保护口令16.3.6 BSL的内部设置和资源附录A 寻址空间附录B 指令说明B.1 指令汇总B.2 指令格式B.3 不增加ROM开销的模拟指令B.4 指令说明(字母顺序)B.5 用几条指令模拟的宏指令附录C MSP430系列单片机参数表附录D MSP430系列单片机封装形式附录E MSP430系列器件命名
上传时间: 2014-04-28
上传用户:sssnaxie
介绍了无线收发系统的设计过程,该系统以FPGA作为数字中频处理部分,发射机采用FM调制对信号进行处理,接收机采用数字下变频与欠采样技术,将中频信号降采样后解调,得到原信号。系统采用分模块式设计,对电路各个模块的功能和实现加以说明,设计思路灵活,结构清晰。电路在Protel99中设计完成,并用VerilogHDL语言对数字中频进行编程和程序仿真。系统已经做成实体,可以实现信号的无线发射与接收,达到设计提出的要求。
上传时间: 2013-10-16
上传用户:a1054751988
《高速数字设计》是高速数字电路设计从入门到精通的最佳参考书之一,在信号完整性和EMC领域是公认的最有价值的教材之一。作者在书中侧重于基础理论,简化了复杂的数学理论推导,其分析过程详细且通俗易懂,涵盖了信号完整性中许多非常有价值的基本概念,讨论了许多其他资料中较少涉及的测试方法,如电路走线的分布电感和电容,这是非常实用和有价值的。当然,《高速数字设计》不可能面面俱到,然而书中向我们展示的分析问题和解决问题的方法却对解决实际问题大有裨益。
上传时间: 2013-11-17
上传用户:540750247
Pspice教程课程内容:在这个教程中,我们没有提到关于网络表中的Pspice 的网络表文件输出,有关内容将会在后面提到!而且我想对大家提个建议:就是我们不要只看波形好不好,而是要学会分析,分析不是分析的波形,而是学会分析数据,找出自己设计中出现的问题!有时候大家可能会看到,其实电路并没有错,只是有时候我们的仿真设置出了问题,需要修改。有时候是电路的参数设计的不合理,也可能导致一些莫明的错误!我觉得大家做一个分析后自己看看OutFile文件!点,就可以看到详细的情况了!基本的分析内容:1.直流分析2.交流分析3.参数分析4.瞬态分析进阶分析内容:1. 最坏情况分析.2. 蒙特卡洛分析3. 温度分析4. 噪声分析5. 傅利叶分析6. 静态直注工作点分析数字电路设计部分浅谈附录A: 关于Simulation Setting的简介附录B: 关于测量函数的简介附录C:关于信号源的简介
上传时间: 2013-10-14
上传用户:31633073
本书主要介绍了基于cpld/fpga的数字通信系统的设计原理与建模方法。从通信系统的组成、eda概述及建模的概念开始(第1~2章),围绕数字通信系统的vhdl设计与建模两条主线,讲述了常用基本电路的建模与vhdl编程设计(第3章),详细地介绍了数字通信基带信号的编译码、复接与分接、同步信号提取、数字通信基带和频带收发信系统、伪随机序列与误码检测等的原理、建模与vhdl编程设计方法(第4~9章)。全书主要是基于cpld/fpga芯片和利用vhdl语言实现对数字通信单元及系统的建模与设计。 全书内容新颖,循序渐进,概念清晰,针对性和应用性强,既可作为高等院校通信与信息专业的高年级本科生教材或研究生的参考书,也可供科研人员及工程技术人员参考。
上传时间: 2014-01-03
上传用户:tiantian
2012最新版《逻辑分析仪基础知识》:与许多电子测试和测量工具一样,逻辑分析仪是一种针对特定类型问题的解决方案。它是一种通用工具,可以帮助您调试数字硬件、检验设计和调试嵌入式软件。对设计数字电路的工程师来说,逻辑分析仪是一种不可或缺的工具。 逻辑分析仪用于涉及大量信号或挑战性触发要求的数字测量。 我们将首先考察数字示波器及逻辑分析仪的演进。然后,我们将介绍基本逻辑分析仪的构成要素。在有了这些基础知识后,我们将介绍逻辑分析仪有哪些重要功能,及其为什么在为特定应用选择适当工具时发挥重要作用。
上传时间: 2014-01-10
上传用户:黄婷婷思密达
LAB7000系列逻辑分析仪是一款紧凑、快速调试数字电路设计强有力的便携式逻辑分析仪;高速的USB2.0接口、高端的FPGA、强大的ARM处理器等组成的嵌入式系统全方位智能控制;高速、高效、高性能,帮你轻松搞定问题。LAB7000系列逻辑分析仪实现了业界领先的高带宽、大容量的高速采集技术,采样率从200M到1G不等,34通道每通道容量最高达128M;功能灵活强大,集逻辑分析仪、总线分析仪、协议分析仪、频率计、逻辑笔等多种测量开发仪器之大成于一身,适用于各种数字电路的开发、测量、分析和调试工作,还为方便某些特殊的用户提供定制插件服务,是电子研发、电子测量工程师、高校师生的科研开发和教学的得力助手。
上传时间: 2013-10-14
上传用户:pzw421125
与许多电子检测与测量工具相同,逻辑分析仪是针对特定问题提供的解决方案。该工具能够帮助人们实施数字硬件故障检测,功能多样;同时,它还是设计数字电路的工程师必不可少的数字设计工具。逻辑分析仪用于涉及大量信号或复杂的触发器要求的数字测量。本文档将使您了解什么是逻辑分析仪,它如何工作。在逻辑分析仪简介部分中,我们首先关注数字示波器以及逻辑分析仪测量结果评估,随后学习简单逻辑分析仪的构造;拥有上述基础知识后,您将了解逻辑分析仪的重要功能以及针对特定应用时,分析仪为什么成为一种主要选择。
标签: 逻辑仪
上传时间: 2015-01-03
上传用户:mickey008