PSoC(可编程片上系统)是Cypress半导体公司生产的包含有8位微处理器核和数字与模拟混合的信号阵列芯片,其应用领域与8位的MCU相同。与8位的MCU的区别在于PSoC的数字周边资源(如定时器、PWM、UART等等)和模拟周边资源(放大器、比较器、滤波器等等)以数字模块和模拟模块的方式给出。不同型号的PSoC芯片的差异,主要是拥有数字模块和模拟模块的数量不同,用户可以根据自己的需要来定义这些模块。所有这些预定义的模块称为用户模块。在PSoC Express出现以前,开发PSoC的应用项目与MCU的应用开发相似,使用PSoC Designer集成开发环境,根据项目的需要调用和配置资源(用户模块),然后编写代码(C或汇编)、编译、调试等步骤,制成目标芯片
标签: Cypress PSoC 8位微处理器 可编程片上系统
上传时间: 2016-06-01
上传用户:tonyshao
PSoC(可编程片上系统)是Cypress半导体公司生产的包含有8位微处理器核和数字与模拟混合的信号阵列芯片,其应用领域与8位的MCU相同。与8位的MCU的区别在于PSoC的数字周边资源(如定时器、PWM、UART等等)和模拟周边资源(放大器、比较器、滤波器等等)以数字模块和模拟模块的方式给出。不同型号的PSoC芯片的差异,主要是拥有数字模块和模拟模块的数量不同,用户可以根据自己的需要来定义这些模块。所有这些预定义的模块称为用户模块。在PSoC Express出现以前,开发PSoC的应用项目与MCU的应用开发相似,使用PSoC Designer集成开发环境,根据项目的需要调用和配置资源(用户模块),然后编写代码(C或汇编)、编译、调试等步骤,制成目标芯片
标签: Cypress PSoC 8位微处理器 可编程片上系统
上传时间: 2016-06-01
上传用户:小草123
PSoC(可编程片上系统)是Cypress半导体公司生产的包含有8位微处理器核和数字与模拟混合的信号阵列芯片,其应用领域与8位的MCU相同。与8位的MCU的区别在于PSoC的数字周边资源(如定时器、PWM、UART等等)和模拟周边资源(放大器、比较器、滤波器等等)以数字模块和模拟模块的方式给出。不同型号的PSoC芯片的差异,主要是拥有数字模块和模拟模块的数量不同,用户可以根据自己的需要来定义这些模块。所有这些预定义的模块称为用户模块。在PSoC Express出现以前,开发PSoC的应用项目与MCU的应用开发相似,使用PSoC Designer集成开发环境,根据项目的需要调用和配置资源(用户模块),然后编写代码(C或汇编)、编译、调试等步骤,制成目标芯片
标签: Cypress PSoC 8位微处理器 可编程片上系统
上传时间: 2013-12-21
上传用户:leehom61
PSoC(可编程片上系统)是Cypress半导体公司生产的包含有8位微处理器核和数字与模拟混合的信号阵列芯片,其应用领域与8位的MCU相同。与8位的MCU的区别在于PSoC的数字周边资源(如定时器、PWM、UART等等)和模拟周边资源(放大器、比较器、滤波器等等)以数字模块和模拟模块的方式给出。不同型号的PSoC芯片的差异,主要是拥有数字模块和模拟模块的数量不同,用户可以根据自己的需要来定义这些模块。所有这些预定义的模块称为用户模块。在PSoC Express出现以前,开发PSoC的应用项目与MCU的应用开发相似,使用PSoC Designer集成开发环境,根据项目的需要调用和配置资源(用户模块),然后编写代码(C或汇编)、编译、调试等步骤,制成目标芯片
标签: Cypress PSoC 8位微处理器 可编程片上系统
上传时间: 2016-06-01
上传用户:ryb
限制IP访问系统 限制连续或单个ip访问 添加单个就只填起始IP就可以了 一: 在数据库中添加一个“ip”表 id-自动编号 IP_start-数字-双精度型 IP_end-数字-双精度型 二: 修改一下admin_ip.asp文件 这个是管理页面 打开后修改一下数据库链接地址和加入身份验证就可以了 三: 根据conn.asp修改你自己的conn.asp
上传时间: 2013-12-22
上传用户:zhaoq123
现代通信越来越依靠全数字处理技术, 通信系统中的全数字调制解调意味着发射机 及接收机将全部采用数字信号处理(DSP) 算法, 从而整个通信系统就可以用DSP 芯片或超 大规模集成电路(VL S I) 器件来实现。对全数字BPSK 调制解调系统采用计算机仿真的方法 进行研究能清楚地了解通信系统中所运用的数字信号处理技术, 包括信息源、发送和接收 滤波器、内插器以及判决器等全部采用数字信号处理算法来实现。文章给出了BPSK 调制 解调系统各个模块的算法和结构, 运用MA TLAB 软件进行了仿真, 得出了各个部分的时域 和频域波形图, 系统仿真的设计方法对Q PSK、16QAM 等全数字调制解调系统的硬件实现 具有实际的指导意义。
上传时间: 2016-06-15
上传用户:qwe1234
现代通信越来越依靠全数字处理技术, 通信系统中的全数字调制解调意味着发射机 及接收机将全部采用数字信号处理(DSP) 算法, 从而整个通信系统就可以用DSP 芯片或超 大规模集成电路(VL S I) 器件来实现。对全数字BPSK 调制解调系统采用计算机仿真的方法 进行研究能清楚地了解通信系统中所运用的数字信号处理技术, 包括信息源、发送和接收 滤波器、内插器以及判决器等全部采用数字信号处理算法来实现。文章给出了BPSK 调制 解调系统各个模块的算法和结构, 运用MA TLAB 软件进行了仿真, 得出了各个部分的时域 和频域波形图, 系统仿真的设计方法对Q PSK、16QAM 等全数字调制解调系统的硬件实现 具有实际的指导意义。
上传时间: 2014-01-17
上传用户:Breathe0125
现代通信越来越依靠全数字处理技术, 通信系统中的全数字调制解调意味着发射机 及接收机将全部采用数字信号处理(DSP) 算法, 从而整个通信系统就可以用DSP 芯片或超 大规模集成电路(VL S I) 器件来实现。对全数字BPSK 调制解调系统采用计算机仿真的方法 进行研究能清楚地了解通信系统中所运用的数字信号处理技术, 包括信息源、发送和接收 滤波器、内插器以及判决器等全部采用数字信号处理算法来实现。文章给出了BPSK 调制 解调系统各个模块的算法和结构, 运用MA TLAB 软件进行了仿真, 得出了各个部分的时域 和频域波形图, 系统仿真的设计方法对Q PSK、16QAM 等全数字调制解调系统的硬件实现 具有实际的指导意义。
上传时间: 2013-12-10
上传用户:wlcaption
用AT89S51单片机的P0.0/AD0-P0.7/AD7端口接数码管的a-h端,8位数码管的S1-S8通过74LS138译码器的Y0-Y7来控制选通每个数码管的位选端。AT89S51单片机的P1.0-P1.2控制74LS138的A,B,C端子。在8位数码管上从右向左循环显示“12345678”。能够比较平滑地看到拉幕的效果。
上传时间: 2016-06-17
上传用户:wanghui2438
用VHTL描述7段数码管器,输入为一个四位二进制,在数码管上显示数字的同时也显示这四位二进制。使用了port map语句
上传时间: 2016-06-17
上传用户:ruixue198909