开发和研制无铁心永磁电机是当前电机领域的一项重要课题,无铁心永磁电机可以解决传统有铁心电机存在的重量重、损耗高、振动噪声大等问题。开发无铁心永磁电机需要准确计算电机的参数和性能,而实现这一任务的重要前提是获得正确的磁场分布。无铁心永磁电机气隙外没有铁磁材料,其自身的结构特点决定了无铁心永磁电机的气隙磁场属于三维开域磁场,开域磁场工程问题的计算是近年来计算电磁学的研究热点之一。 本文的研究内容是国家高技术研究发展(863)计划项目“新型稀土永磁电机设计与集成技术”的关键技术之一。针对无铁心永磁电机的实际工程问题,计算方法的选择力求既能保证一定的计算精度,又能节约计算机内存和CPU时间。根据对各种开域电磁场计算方法的分析比较,本文将渐近边界条件法和有限元法结合解决无铁心永磁电机三维开域磁场计算问题。 本文主要由以下几部分组成: 第一部分为无铁心永磁电机三维开域磁场计算方法的研究。首先提出了基于标量磁位的渐近边界条件,建立了球形边界的标量磁位渐近边界条件数学模型。为了尽可能减少节点的数量,结合无铁心永磁电机的具体结构,推导了适合于盒形截断边界和圆柱形截断边界上简便易行的一阶和二阶标量渐近边界条件算子,该算子具有简单、有限元实施容易的特点。其次研究并建立了标量渐近边界条件与有限元法结合的三维开域静磁场的数学模型,并提出具体的实施方法,推导出相应的离散方程。通过对具有解析解的长方永磁体三维开域磁场的实例计算,验证了方法和所编程序的正确性,并将渐近边界条件法与截断法在计算精度和人工外边界距离方面做了比较。结果表明:在相同人工外边界情况下,渐近边界条件与截断边界条件相比,计算精度明显提高,二阶渐近边界条件明显优于一阶渐近边界条件。与截断法相比,渐近边界条件法更节约计算机内存和CPU时间,比较好地处理了计算量与计算精度之间的矛盾。 第二部分针对Halbach阵列内转子无铁心永磁电机三维开域磁场问题进行深入研究。利用渐近边界条件法,定量地计算了在定转子均无铁心的情况下电机内部及周围磁场的大小,总结出了Halbach阵列无铁心永磁电机磁场的空间分布规律。 第三部分针对不同拓扑结构的Halbach磁体阵列电机磁场问题进行对比研究。通过大量的计算,探讨了Halbach阵列永磁电机在转子无铁心情况下影响气隙磁密的各种因素,分析了不同Halbach磁体轴向长度对端部漏磁的影响规律,给出了无铁心永磁电机漏磁系数、电枢计算长度等主要设计参数随电机结构尺寸的变化规律。 第四部分针对具有试验数据的三种结构的无铁心永磁电机样机进行了计算和分析,计算结果与试验数据吻合,从而验证了渐近边界条件法处理三维开域磁场问题的有效性和实用性。
上传时间: 2013-06-22
上传用户:ivan-mtk
永磁电动机相比其他类型的电动机其性能指标突出,将广泛应用于各个行业。但是随着电机工业朝着大容量、高功率密度、小体积的趋势发展,永磁电动机温升与其它各项指标在配合上发生了分歧。为了解决这些问题,就要对永磁电机进行合理的冷却设计及温度计算。永磁电机的温升计算除了要考察定子绕组处的受热,同时也要兼顾永磁体的温度情况‰本文对永磁电机的温度计算及冷却系统进行了如下分析设计: 首先,通过电磁学与传热学、流体力学等边缘学科,对永磁电机进行温度场分析。其中对自冷径向永磁电机温度场进行详细地分析与计算。利用等效热网络法,即离散网格,使参数集中化,列出方程组,解出各剖分点的温度值。采用与其相对应的经验公式及实验结果确定永磁电机的散热系数。 其次对径向永磁电机的损耗分布进行说明,不仅从数量上对槽内绕组损耗和端部绕组损耗做出了区分,而且从理论上对定子轭部和定子齿部的损耗进行分析,以确保在损耗分布上尽量使误差减少。其次利用ANSYS、ANSOFT软件,采用有限元方法对永磁电机稳态、瞬态时的温度分布情况进行分析。利用上述方法对TYJS机床电机4.4kW-3000进行分析,比较其理论值与实验值之问的误差,结果比较满意。 最后,本文对5kW-450双定子-单转子盘式电机的温度场进行分析。由于径向电机与盘式电机在结构上的区别,分别对盘式电机的损耗分布、散热系数的求取等不同之处与径向电机进行比较。对盘式电动机外部冷却系统的设计上,采用假定系数法,反推风扇结构,合理地设计了该样机的冷却系统。通过以上的分析,能够较准确计算电机的温度值,从中得出其局部过热点。这样给电机的改进和研制都带来了方便。
上传时间: 2013-06-14
上传用户:szchen2006
准确计算电机铁耗一直是困扰电机设计者的一个难题。传统方法是假设电机内部磁场仅是交变磁化的,根据铁磁材料在交变磁化条件下测量的数据,计算电机齿部和轭部由基波磁场造成的损耗,对于计算值与实测值之间的误差通过经验系数来修正。这种方法对于已经长期制造和使用的电机而言勉强适用,对于近年来发展很快的永磁电机、高速电机和其他新结构电机,由于缺乏合适的经验系数,导致此方法难以适用。众多研究人员的成果已经证明电机的铁耗有相当一部分是由旋转磁化导致的,因此顾及旋转磁化的电机铁耗计算模型是本文的一个重要内容。 本文从铁磁材料的铁耗入手,先研究铁磁材料在交变磁化和旋转磁化方式下的计算和测量方法,目的是得到铁耗分立模型中磁滞损耗、涡流损耗和异常损耗的计算系数。本文提出并实现了数字式的25cm爱泼斯坦方圈测试系统,它可以测量在任何频率和波形电源供电下硅钢片的损耗,本文还在二维铁耗测试系统中对硅钢片在圆形旋转磁化条件下的损耗进行了测量。结果表明,在同样频率和磁密的条件下,旋转磁化下的损耗要比交变磁化下的损耗大。本文提出了基于磁密轨迹的电机铁耗计算模型,它只采用较容易获得的交变磁化损耗系数,但又能顾及到旋转磁化带来的影响。通过实际电机的计算和测试,表明轨迹法的计算结果在未经任何系数修正的情况下就具有很好的精度,适合推广使用。 软磁复合材料是一种新型的粉末金属材料,它具有涡流损耗小和易制造成具有复杂结构电机等特点。为了探索这种材料在高频领域中的应用和验证本文提出的铁耗计算模型,本文成功地设计和制造了一台采用软磁复合材料的爪极式永磁电机,由于结构复杂,本文通过三维有限元分析,对该电机的磁通、磁链、电感、转矩和铁耗等参数和性能的计算提出了计算方法。对该种电机的热分析,本文提出了热网络法和磁热耦合有限元法。由于铁耗在高速电机总损耗中占有很大比例,因此在有限元方法中,本文通过映射剖分法,使磁场和热场模型中的单元总数、大小和顺序保持完全一致,轨迹法计算得到的各单元铁耗直接耦合进热场进行计算,得到了电机准确的温度分布。本文还进行了高速电机转子的模态分析,合理地调整转子的直径、长度和轴承位置,使转子的自然共振频率远离电机的工作频率范围。本文构建了一测试平台对样机进行了发电机状态测试,并通过假转子法测量了电机铁耗,实验结果证明了本文所用方法的可行性,得到的结论对软磁复合材料的应用及爪极式电机的设计与分析都具有很好的参考价值。
上传时间: 2013-06-27
上传用户:hjshhyy
与传统的径向磁通圆柱式电机相比,轴向磁通的盘式无铁心永磁同步电机有着许多明显的优点:其结构较为简单,加工及装配费用低,电机运行可靠,不需励磁电流,提高了电机的效率和功率密度。盘式电机永磁化是一种发展趋势,而稀土材料是其首选的永磁材料。我国已研制出盘式永磁同步电机,但还处于试制阶段,要实现产品化,还有许多研究课题亟待解决。 本文主要针对该电机的气隙磁密进行分析,对影响气隙磁密的各种因素展开了研究。具体内容如下: 1) 回顾了永磁电机的研究历史、发展现状和主要应用,对永磁材料的性能及选取、聚磁技术、电机磁场计算所需理论和有限元软件进行了介绍。 2) 将电机内的电磁场、有限元软件和盘式无铁心永磁电机特殊结构相结合,设计出了近二十个有限元计算程序,组成一个针对盘式无铁心永磁同步电机的计算软件包,由这些计算程序出发,对盘式无铁心永磁同步电机进行一系列仿真分析计算。 在绘制气隙磁密三维分布图时,由于有限元软件在绘图方面的限制,需要将气隙磁密数据从有限元软件中导出到文本文件,再由其它数学工具进行气隙磁密的三维图形绘制。在这一过程中由于导出数据格式与绘图工具所需数据格式不能兼容,还需要对导出数据进行处理。由于有限元软件导出的数据量很大,如果对这些数据进行人工整理将增加大量的工作量,所以作者在研究过程中,针对导出数据的特点编写了一个Vb数据处理程序,使数据处理工作得到大大简化。 3) 在上述建立的软件包的基础上,对基于Halbach阵列的盘式无铁心永磁同步电机进行了一系列系统分析,其中包括三维开域磁场分析、永磁体厚度对电机气隙磁密的影响及分析、永磁体宽度变化时气隙磁场分析、采用不同角度Halbach阵列时的气隙磁密分析、不同半径处气隙磁密分析,为在电机设计过程中永磁体的设计提供了依据。 4) 在对盘式无铁心永磁同步电机磁场进行详尽的分析的基础之上,本文提出了对该电机的新设计方案,并就此方案进行了建模分析,结果表明,此新方案所得到的气隙磁密比原结构的气隙磁密更为理想。此外,还对新模型从定性的角度进行了涡流损耗分析,分析表明其结构有利于减小涡流损耗。
上传时间: 2013-04-24
上传用户:牧羊人8920
高速电机由于转速高、体积小、功率密度高,在涡轮发电机、涡轮增压器、高速加工中心、飞轮储能、电动工具、空气压缩机、分子泵等许多领域得到了广泛的应用。永磁无刷直流电机由于效率高、气隙大、转子结构简单,因此特别适合高速运行。高速永磁无刷直流电机是目前国内外研究的热点,其主要问题在于:(1)转子机械强度和转子动力学;(2)转子损耗和温升。本文针对高速永磁无刷直流电机主要问题之一的转子涡流损耗进行了深入分析。转子涡流损耗是由定子电流的时间和空间谐波以及定子槽开口引起的气隙磁导变化所产生的。首先通过优化定子结构、槽开口和气隙长度的大小来降低电流空间谐波和气隙磁导变化所产生的转子涡流损耗;通过合理地增加绕组电感以及采用铜屏蔽环的方法来减小电流时间谐波引起的转子涡流损耗。其次对转子充磁方式和转子动力学进行了分析。最后制作了高速永磁无刷直流电机样机和控制系统,进行了空载和负载实验研究。论文主要工作包括: 一、采用解析计算和有限元仿真的方法研究了不同的定子结构、槽开口大小、以及气隙长度对高速永磁无刷直流电机转子涡流损耗的影响。对于2极3槽集中绕组、2极6槽分布叠绕组和2极6槽集中绕组的三台电机的定子结构进行了对比,利用傅里叶变换,得到了分布于定子槽开口处的等效电流片的空间谐波分量,然后采用计及转子集肤深度和涡流磁场影响的解析模型计算了转子涡流损耗,通过有限元仿真对解析计算结果加以验证。结果表明:3槽集中绕组结构的电机中含有2次、4次等偶数次空间谐波分量,该谐波分量在转子中产生大量的涡流损耗。采用有限元仿真的方法研究了槽开口和气隙长度对转子涡流损耗的影响,在空载和负载状态下的研究结果均表明:随着槽开口的增加或者气隙长度的减小,转子损耗随之增加。因此从减小高速永磁无刷电机转子涡流损耗的角度考虑,2极6槽的定子结构优于2极3槽结构。 二、高速永磁无刷直流电机额定运行时的电流波形中含有大量的时间谐波分量,其中5次和7次时间谐波分量合成的电枢磁场以6倍转子角速度相对转子旋转,11次和13次时间谐波分量合成的电枢磁场以12倍转子角速度相对转子旋转,这些谐波分量与转子异步,在转子保护环、永磁体和转轴中产生大量的涡流损耗,是转子涡流损耗的主要部分。首先研究了永磁体分块对转子涡流损耗的影响,分析表明:永磁体的分块数和透入深度有关,对于本文设计的高速永磁无刷直流电机,当永磁体分块数大于12时,永磁体分块才能有效地减小永磁体中的涡流损耗;反之,永磁体分块会使永磁体中的涡流损耗增加。为了提高转子的机械强度,在永磁体表面通常包裹一层高强度的非磁性材料如钛合金或者碳素纤维等。分析了不同电导率的包裹材料对转子涡流损耗的影响。然后利用涡流磁场的屏蔽作用,在转子保护环和永磁体之间增加一层电导率高的铜环。有限元分析表明:尽管铜环中会产生涡流损耗,但正是由于铜环良好的导电性,其产生的涡流磁场抵消了气隙磁场的谐波分量,使永磁体、转轴以及保护环中的损耗显著下降,整体上降低了转子涡流损耗。分析了不同的铜环厚度对转子涡流损耗的影响,研究表明转子各部分的涡流损耗随着铜屏蔽环厚度的增加而减小,当铜环的厚度达到6次时间谐波的透入深度时,转子损耗减小到最小。 三、对于给定的电机尺寸,设计了两台电感值不同的高速永磁无刷直流电机,通过研究表明:电感越大,电流变化越平缓,电流的谐波分量越低,转子涡流损耗越小,因此通过合理地增加绕组电感能有效的降低转子涡流损耗。 四、研究了高速永磁无刷直流电机的电磁设计和转子动力学问题。对比分析了平行充磁和径向充磁对高速永磁无刷直流电机性能的影响,结果表明:平行充磁优于径向充磁。设计并制作了两种不同结构的转子:单端式轴承支撑结构和两端式轴承支撑结构。对两种结构进行了转子动力学分析,实验研究表明:由于转子设计不合理,单端式轴承支撑结构的转子转速达到40,000rpm以上时,保护环和定子齿部发生了摩擦,破坏了转子动平衡,导致电机运行失败,而两端式轴承支撑结构的转子成功运行到100,000rpm以上。 五、最后制作了平行充磁的高速永磁无刷直流电机样机和控制系统,进行了空载和负载实验研究。对比研究了PWM电流调制和铜屏蔽环对转子损耗的影响,研究表明:铜屏蔽环能有效的降低转子涡流损耗,使转子损耗减小到不加铜屏蔽环时的1/2;斩波控制会引入高频电流谐波分量,使得转子涡流损耗增加。通过计算绕组反电势系数的方法,得到了不同控制方式下带铜屏蔽环和不带铜屏蔽环转子永磁体温度。采用简化的暂态温度场有限元模型分析了转子温升,有限元分析和实验计算结果基本吻合,验证了铜屏蔽环的有效性。
上传时间: 2013-05-18
上传用户:zl123!@#
盘式永磁同步电动机属于轴向磁场电机,目前,该类电机在国外已经得到了迅速发展,作为一种现代高性能伺服电机和大力矩直接驱动电机己广泛应用于机器人等机电一体化产品中。由于该类电机具有重量轻、体积小、结构紧凑、转子无损耗、转子的转动惯量小、机电时间常数小、转矩/重量比大、低速运行平稳、可以制成多气隙组合式结构进一步提高转矩等特点,其在数控机床、机器人、电动车、电梯、家用电器等场合具有广阔的应用前景,是一种理想的驱动装置。 本课题作为国家863计划项目《新型稀土永磁电机设计及集成技术》2002AA324020中的一部分,该项目的主要工作是进行新型结构钕铁硼永磁电机——盘式无铁心永磁同步电动机的设计与集成技术研究,开发出一种新型钕铁硼永磁电机,解决相应的整机设计和集成技术问题。本文中提出的基于Halbach阵列的盘式无铁心永磁同步电动机是在盘式永磁同步电动机的基础上,将无铁心结构和Halbach型永磁体阵列应用到其中,从而使得电机的质量大为减轻,功率密度提高,振动噪声降低,效率提高。 基于Halbach阵列的盘式无铁心永磁同步电动机其磁路结构和电磁负荷分布与传统电机完全不同,常规电机的某些设计规则不能直接应用到该结构电机的设计当中,本文主要针对这种结构的电机进行了分析与计算。分析了不同结构Halbach阵列下的气隙磁场,以及相关参数的计算,给出了初步的样机设计数据,并对样机的加工工艺进行了探讨,在总结、借鉴相关电机设计方法的基础上,针对盘式无铁心永磁同步电动机自身的特点,编制了一套电磁计算程序,该程序还有待通过大量样机的试验,来总结和完善。 我国稀土资源丰富,然而,由于技术经济上的问题,国产永磁交流伺服电动机至今未能大量应用。与此同时,高性能的永磁交流伺服电动机及系统大量依靠进口,我国每年进口的工程装备当中,仅数控机床因国产电机和系统不能满足要求而每年需要进口的就达22亿美元以上。本项目的完成将改变这类产品主要依靠进口的局面,充分发挥我国稀土资源丰富的优势,其经济效益和社会效益是十分巨大的。
上传时间: 2013-04-24
上传用户:hjkhjk
本文的目的在于,介绍如何计算具有狭窄气隙的圆形转子电机中的绕组感应。我们仅处理理想化的气隙磁场,不考虑槽、外部周边或倾斜电抗。但我们将考察绕组磁动势(MMF)的空间谐频。 在图1中,给出了12槽定子的轴截面示意图。实际上,所显示的是薄钢片的形状,或用于构成磁路的层片。铁芯由薄片构成,以控制涡流电流损耗。厚度将根据工作频率而变,在60Hz的电机中(大体积电机,工业用)层片的厚度典型为.014”(.355毫米)。它们堆叠在一起,以构成具有恰当长度的磁路。绕组位于该结构的槽内。 在图1中,给出了带有齿结构的梯形槽,在大部分长度方向上具有近乎均匀的截面,靠近气隙处较宽。齿端与相对狭窄的槽凹陷区域结合在一起,通过改善气隙场的均匀性、增加气隙磁导、将绕组保持在槽中,有助于控制很多电机转子中的寄生损耗。请注意,对于具有名为“形式缠绕”线圈的大型电机,它具有直边矩形槽,以及非均匀截面齿。下面的介绍针对两类电机。
上传时间: 2013-10-13
上传用户:我干你啊
1.先计算BUCK 电容的损耗(电容的内阻为Rbuck 假设为350mΩ,输入范围为85VAC~264VAC,频率为50Hz,POUT=60W,VOUT=60W):
上传时间: 2013-12-24
上传用户:yd19890720
提出了共模插入损耗和差模插入损耗的计算方法,推导了滤波器插入损耗与阻抗关系的表达式,并且对这一关系作了仿真分析,仿真结果验证了理论计算和分析的正确性。
上传时间: 2013-11-20
上传用户:baba
输电线路电压等级越高,地线上的电能损耗就越大,如何降低地线损耗意义重大分析了电能在地线中产生损耗的原因,通过EMTP仿真计算了在各种情况下电能损耗.比较了采用地线分段后的效果,得出:对750 kV输电线路采用分段绝缘的绝缘方式.有效地减小地线上的感应电流,使地线的损耗降抵为地线两端直接接地时的99%以上:三相负载平衡程度越小,地线产生损耗会越大,应尽量保证系统三相负载平衡:适当调整接地电阻的大小可以优化地线电能损耗;输电线路长度增加,地线损耗和地线上的感应电压也增大.应选取合适的分段距离,使地线损耗降低到最小
上传时间: 2014-03-21
上传用户:731140412