随着变频器的广泛使用,系统的抗干扰技术变得越来越重要,其中接地是抑制干扰,提高系统电磁兼容性能的重要手段之一。正确的接地可以使系统有效地抑制外来的干扰,同时又能有效地降低系统本身对外的电磁骚扰。在实际应用中,由于系统电源的零线(中线)、地线(保护接地线和系统接地线)不分,系统的屏蔽地(控制信号的屏蔽地和主电路导线的屏蔽地)连接混乱,大大降低了系统的稳定性和可靠性。
上传时间: 2013-11-10
上传用户:小宝爱考拉
着重对变频器驱动三相交流电动机带大位能负载下放时,变频器电气制动动态过程进行分析,依据制动转矩和制动过程时间的要求,合理计算制动单元和制动电阻,并对轮胎式集装箱门式起重机(RTG)的起升变频器制动单元和制动电阻进行校验,以获得理想的快速制动特性。
上传时间: 2013-11-18
上传用户:liuwei6419
为分析基于LCL滤波器的双馈风电网侧变换器在不同电流反馈控制结构情况下的工作性能, 采取PI控制器对网侧变换器网侧电流反馈控制结构和变换器侧电流反馈控制结构的电流闭环根轨迹进行分析,对其在理想电网无阻尼电阻和有阻尼电阻、非理想电网无阻尼电阻3种情况下的特性进行了比较。分析及仿真结果表明变换器侧电流反馈控制结构控制算法相对较复杂,但是系统稳定性好,电网电流的谐波畸变率较低;而电网侧电流反馈控制结构较易实现网侧单位功率因数控制,但稳定性较差。
上传时间: 2013-10-26
上传用户:huql11633
本书从应用的角度,详细地介绍了MCS-51单片机的硬件结构、指令系统、各种硬件接口设计、各种常用的数据运算和处理程序及接口驱动程序的设计以及MCS-51单片机应用系统的设计,并对MCS-51单片机应用系统设计中的抗干扰技术以及各种新器件也作了详细的介绍。本书突出了选取内容的实用性、典型性。书中的应用实例,大多来自科研工作及教学实践,且经过检验,内容丰富、翔实。 本书可作为工科院校的本科生、研究生、专科生学习MCS-51单片机课程的教材,也可供从事自动控制、智能仪器仪表、测试、机电一体化以及各类从事MCS-51单片机应用的工程技术人员参考。 第一章 单片微型计等机概述 1.1 单片机的历史及发展概况 1.2 单片机的发展趋势 1.3 单片机的应用 1.3.1 单片机的特点 1.3.2 单片机的应用范围 1.4 8位单片机的主要生产厂家和机型 1.5 MCS-51系列单片机 第二章 MCS-51单片机的硬件结构 2.1 MCS-51单片机的硬件结构 2.2 MCS-51的引脚 2.2.1 电源及时钟引脚 2.2.2 控制引脚 2.2.3 I/O口引脚 2.3 MCS-51单片机的中央处理器(CPU) 2.3.1 运算部件 2.3.2 控制部件 2.4 MCS-51存储器的结构 2.4.1 程序存储器 2.4.2 内部数据存储器 2.4.3 特殊功能寄存器(SFR) 2.4.4 位地址空间 2.4.5 外部数据存储器 2.5 I/O端口 2.5.1 I/O口的内部结构 2.5.2 I/O口的读操作 2.5.3 I/O口的写操作及负载能力 2.6 复位电路 2.6.1 复位时各寄存器的状态 2.6.2 复位电路 2.7 时钟电路 2.7.1 内部时钟方式 2.7.2 外部时钟方式 2.7.3 时钟信号的输出 第三章 MCS-51的指令系统 3.1 MCS-51指令系统的寻址方式 3.1.1 寄存器寻址 3.1.2 直接寻址 3.1.3 寄存器间接寻址 3.1.4 立即寻址 3.1.5 基址寄存器加变址寄存器间址寻址 3.2 MCS-51指令系统及一般说明 3.2.1 数据传送类指令 3.2.2 算术操作类指令 3.2.3 逻辑运算指令 3.2.4 控制转移类指令 3.2.5 位操作类指令 第四章 MCS-51的定时器/计数器 4.1 定时器/计数器的结构 4.1.1 工作方式控制寄存器TMOD 4.1.2 定时器/计数器控制寄存器TCON 4.2 定时器/计数器的四种工作方式 4.2.1 方式0 4.2.2 方式1 4.2.3 方式2 4.2.4 方式3 4.3 定时器/计数器对输入信号的要求 4.4 定时器/计数器编程和应用 4.4.1 方式o应用(1ms定时) 4.4.2 方式1应用 4.4.3 方式2计数方式 4.4.4 方式3的应用 4.4.5 定时器溢出同步问题 4.4.6 运行中读定时器/计数器 4.4.7 门控制位GATE的功能和使用方法(以T1为例) 第五章 MCS-51的串行口 5.1 串行口的结构 5.1.1 串行口控制寄存器SCON 5.1.2 特殊功能寄存器PCON 5.2 串行口的工作方式 5.2.1 方式0 5.2.2 方式1 5.2.3 方式2 5.2.4 方式3 5.3 多机通讯 5.4 波特率的制定方法 5.4.1 波特率的定义 5.4.2 定时器T1产生波特率的计算 5.5 串行口的编程和应用 5.5.1 串行口方式1应用编程(双机通讯) 5.5.2 串行口方式2应用编程 5.5.3 串行口方式3应用编程(双机通讯) 第六章 MCS-51的中断系统 6.1 中断请求源 6.2 中断控制 6.2.1 中断屏蔽 6.2.2 中断优先级优 6.3 中断的响应过程 6.4 外部中断的响应时间 6.5 外部中断的方式选择 6.5.1 电平触发方式 6.5.2 边沿触发方式 6.6 多外部中断源系统设计 6.6.1 定时器作为外部中断源的使用方法 6.6.2 中断和查询结合的方法 6.6.3 用优先权编码器扩展外部中断源 第七章 MCS-51单片机扩展存储器的设计 7.1 概述 7.1.1 只读存储器 7.1.2 可读写存储器 7.1.3 不挥发性读写存储器 7.1.4 特殊存储器 7.2 存储器扩展的基本方法 7.2.1 MCS-51单片机对存储器的控制 7.2.2 外扩存储器时应注意的问题 7.3 程序存储器EPROM的扩展 7.3.1 程序存储器的操作时序 7.3.2 常用的EPROM芯片 7.3.3 外部地址锁存器和地址译码器 7.3.4 典型EPROM扩展电路 7.4 静态数据存储的器扩展 7.4.1 外扩数据存储器的操作时序 7.4.2 常用的SRAM芯片 7.4.3 64K字节以内SRAM的扩展 7.4.4 超过64K字节SRAM扩展 7.5 不挥发性读写存储器扩展 7.5.1 EPROM扩展 7.5.2 SRAM掉电保护电路 7.6 特殊存储器扩展 7.6.1 双口RAMIDT7132的扩展 7.6.2 快擦写存储器的扩展 7.6.3 先进先出双端口RAM的扩展 第八章 MCS-51扩展I/O接口的设计 8.1 扩展概述 8.2 MCS-51单片机与可编程并行I/O芯片8255A的接口 8.2.1 8255A芯片介绍 8.2.2 8031单片机同8255A的接口 8.2.3 接口应用举例 8.3 MCS-51与可编程RAM/IO芯片8155H的接口 8.3.1 8155H芯片介绍 8.3.2 8031单片机与8155H的接口及应用 8.4 用MCS-51的串行口扩展并行口 8.4.1 扩展并行输入口 8.4.2 扩展并行输出口 8.5 用74LSTTL电路扩展并行I/O口 8.5.1 用74LS377扩展一个8位并行输出口 8.5.2 用74LS373扩展一个8位并行输入口 8.5.3 MCS-51单片机与总线驱动器的接口 8.6 MCS-51与8253的接口 8.6.1 逻辑结构与操作编址 8.6.2 8253工作方式和控制字定义 8.6.3 8253的工作方式与操作时序 8.6.4 8253的接口和编程实例 第九章 MCS-51与键盘、打印机的接口 9.1 LED显示器接口原理 9.1.1 LED显示器结构 9.1.2 显示器工作原理 9.2 键盘接口原理 9.2.1 键盘工作原理 9.2.2 单片机对非编码键盘的控制方式 9.3 键盘/显示器接口实例 9.3.1 利用8155H芯片实现键盘/显示器接口 9.3.2 利用8031的串行口实现键盘/显示器接口 9.3.3 利用专用键盘/显示器接口芯片8279实现键盘/显示器接口 9.4 MCS-51与液晶显示器(LCD)的接口 9.4.1 LCD的基本结构及工作原理 9.4.2 点阵式液晶显示控制器HD61830介绍 9.5 MCS-51与微型打印机的接口 9.5.1 MCS-51与TPμp-40A/16A微型打印机的接口 9.5.2 MCS-51与GP16微型打印机的接口 9.5.3 MCS-51与PP40绘图打印机的接口 9.6 MCS-51单片机与BCD码拨盘的接口设计 9.6.1 BCD码拨盘 9.6.2 BCD码拨盘与单片机的接口 9.6.3 拨盘输出程序 9.7 MCS-51单片机与CRT的接口 9.7.1 SCIBCRT接口板的主要特点及技术参数 9.7.2 SCIB接口板的工作原理 9.7.3 SCIB与MCS-51单片机的接口 9.7.4 SCIB的CRT显示软件设计方法 第十章 MCS-51与D/A、A/D的接口 10.1 有关DAC及ADC的性能指标和选择要点 10.1.1 性能指标 10.1.2 选择ABC和DAC的要点 10.2 MCS-51与DAC的接口 10.2.1 MCS-51与DAC0832的接口 10.2.2 MCS-51同DAC1020及DAC1220的接口 10.2.3 MCS-51同串行输入的DAC芯片AD7543的接口 10.3 MCS-51与ADC的接口 10.3.1 MCS-51与5G14433(双积分型)的接口 10.3.2 MCS-51与ICL7135(双积分型)的接口 10.3.3 MCS-51与ICL7109(双积分型)的接口 10.3.4 MCS-51与ADC0809(逐次逼近型)的接口 10.3.5 8031AD574(逐次逼近型)的接口 10.4 V/F转换器接口技术 10.4.1 V/F转换器实现A/D转换的方法 10.4.2 常用V/F转换器LMX31简介 10.4.3 V/F转换器与MCS-51单片机接口 10.4.4 LM331应用举例 第十一章 标准串行接口及应用 11.1 概述 11.2 串行通讯的接口标准 11.2.1 RS-232C接口 11.2.2 RS-422A接口 11.2.3 RS-485接口 11.2.4 各种串行接口性能比较 11.3 双机串行通讯技术 11.3.1 单片机双机通讯技术 11.3.2 PC机与8031单片机双机通讯技术 11.4 多机串行通讯技术 11.4.1 单片机多机通讯技术 11.4.2 IBM-PC机与单片机多机通讯技术 11.5 串行通讯中的波特率设置技术 11.5.1 IBM-PC/XT系统中波特率的产生 11.5.2 MCS-51单片机串行通讯波特率的确定 11.5.3 波特率相对误差范围的确定方法 11.5.4 SMOD位对波特率的影响 第十二章 MCS-51的功率接口 12.1 常用功率器件 12.1.1 晶闸管 12.1.2 固态继电器 12.1.3 功率晶体管 12.1.4 功率场效应晶体管 12.2 开关型功率接口 12.2.1 光电耦合器驱动接口 12.2.2 继电器型驱动接口 12.2.3 晶闸管及脉冲变压器驱动接口 第十三章 MCS-51单片机与日历的接口设计 13.1 概述 13.2 MCS-51单片机与实时日历时钟芯片MSM5832的接口设计 13.2.1 MSM5832性能及引脚说明 13.2.2 MSM5832时序分析 13.2.3 8031单片机与MSM5832的接口设计 13.3 MCS-51单片机与实时日历时钟芯片MC146818的接口设计 13.3.1 MC146818性能及引脚说明 13.3.2 MC146818芯片地址分配及各单元的编程 13.3.3 MC146818的中断 13.3.4 8031单片机与MC146818的接口电路设计 13.3.5 8031单片机与MC146818的接口软件设计 第十四章 MCS-51程序设计及实用子程序 14.1 查表程序设计 14.2 散转程序设计 14.2.1 使用转移指令表的散转程序 14.2.2 使用地地址偏移量表的散转程序 14.2.3 使用转向地址表的散转程序 14.2.4 利用RET指令实现的散转程序 14.3 循环程序设计 14.3.1 单循环 14.3.2 多重循环 14.4 定点数运算程序设计 14.4.1 定点数的表示方法 14.4.2 定点数加减运算 14.4.3 定点数乘法运算 14.4.4 定点数除法 14.5 浮点数运算程序设计 14.5.1 浮点数的表示 14.5.2 浮点数的加减法运算 14.5.3 浮点数乘除法运算 14.5.4 定点数与浮点数的转换 14.6 码制转换 ……
上传时间: 2013-11-06
上传用户:xuanjie
附件是51mini仿真器中文使用手册,其中包括有51mini的驱动,USB安装指南及USB驱动程序。 2003 年 SST 公司推出了 SST89C54/58 芯片,并且在官方网站公布了单片机仿真程序,配合 KEIL 可以实现标 准 51 内核芯片的单步调试等等,从而实现了一个简单的 51 单片机仿真方案,将仿真器直接拉低到一颗芯片的价 格。 但是, 1 分钱 1 分货,这个仿真方案由于先天的缺陷存在若干重大问题: 占用 p30,p31 端口 占用定时器 2 占用 8 个 sp 空间 运行速度慢 最高通信速度只有 38400,无法运行 c 语言程序。(由于 c 语言程序会调用库文件,每单步一次 的时间足够你吃个早饭) 所以,网上大量销售的这种这种仿真器最多只能仿真跑马灯等简单程序,并没有实际使用价值。51mini 是深 圳市学林电子有限公司开发生产的具有自主知识产权的新一代专业仿真器,采用双 CPU 方案,一颗负责和 KEIL 解 释,另外一颗负责运行用户程序,同时巧妙利用 CPU 的 P4 口通信,释放 51 的 P30,P31,完美解决了上述问题, 体积更小,是目前价格最低的专业级别 51 单片机仿真器,足以胜任大型项目开发。 51mini仿真器创新设计: 1 三明治夹心双面贴片,体积缩小到只有芯片大小,真正的“嵌入式”结构。 2 大量采用最新工艺和器件,全贴片安装,进口钽电容,贴片电解。 3 采用快恢复保险,即便短路也可有效保护。 4 单 USB 接口,无需外接电源和串口,台式电脑、无串口的笔记本均适用。三 CPU 设计,采用仿真芯片+监控 芯片+USB 芯片结构,是一款真正独立的仿真器,不需要依赖开发板运行。 5 下载仿真通讯急速 115200bps,较以前版本提高一个数量级(10 倍以上),单步运行如飞。 6 不占资源,无限制真实仿真(32 个 IO、串口、T2 可完全单步仿真),真实仿真 32 条 IO 脚,包括任意使用 P30 和 P31 口。 7 兼容 keilC51 UV2 调试环境支持单步、断点、随时可查看寄存器、变量、IO、内存内容。可仿真各种 51 指 令兼容单片机,ATMEL、Winbond、INTEL、SST、ST 等等。可仿真 ALE 禁止,可仿真 PCA,可仿真双 DPTR,可仿真 硬件 SPI。媲美 2000 元级别专业仿真器! 8 独创多声响和 led 指示实时系统状态和自检。 9 独创长按复位键自动进入脱机运行模式,这时仿真机就相当于目标板上烧好的一个芯片,可以更加真实的运 行。这种情况下实际上就变了一个下载器,而且下次上电时仍然可以运行上次下载的程序。 USB 驱动的安装 第一步:用随机 USB 通讯电缆连接仪器的 USB 插座和计算机 USB口;显示找到新硬件向导,选择“从列表或指定位置安装(高级)”选项,进入下一步; 第二步:选择“在搜索中包括这个位置”,点击“浏览”,定位到配套驱动光盘的驱动程序文件夹,如 E:\驱动程序\XLISP 驱动程序\USBDRIVER2.0\,进入下一步; 第三步:弹出“硬件安装”对话框,如果系统提示“没有通过Windows 徽标测试…”,不用理会,点击“仍然继续”,向导即开始安装软件;然后弹出“完成找到新硬件向导”对话框,点击完成。 第四步:系统第二次弹出“找到新的硬件向导”对话框,重复以上几个步骤; 右下角弹出对话框“新硬件已安装并可以使用了”,表明 USB 驱动已成功安装。你可以进入系统的:控制面板\系统\硬件\设备管理器中看到以下端口信息, 表示系统已经正确的安装了 USB 驱动。
上传时间: 2013-11-02
上传用户:猫爱薛定谔
采用基于Cortex-M3核的微控制器STM32F103CBT6设计了脉冲变极性弧焊控制系统。该系统利用片内的高级定时器实现了快速脉冲切换,以及脉冲频率、起始时间、占空比的大范围调节;利用定时器间的协同工作,完成了光谱触发信号的精确延时。同时实现了运行过程中对系统电压的测量、监控、传输以及参数输入、显示、存储等功能,并简述了软件开发方法。
上传时间: 2013-10-20
上传用户:苍山观海
将语音报时万年台历和新型“傻瓜”语音录放模块组台起来可制作成性能优良、实用性强的多功能语音提醒器。这样制成的语音提醒器具有以下特点和功能:(1)高保真语音提醒时间最长达20s.语音内容可根据使用者需要反复录制及播放;/2)24小时内可任意设定钟控定时提醒1~3次,可广泛用于提醒病人按时服药、大人按时上班及做饭、小孩按时上学丑睡觉等;(3) 年 月、日、时、分为单位,设定一次近期大事备忘预约提醒.准时提醒主人过生日、赴宴会、参加重要活动或会议等;(4)万年台历原有的各种显示功能(年、月、日 星期、室温等)保持不变;(5)断开万年台历和提醒器小盒间的插头,提醒器小盒还可做为家庭留言盒或小学生语言复读机使用。
上传时间: 2014-12-27
上传用户:zchpr@163.com
介招用AT8 9 c5 单片机构成微型可鳊程控制器PLc的设计思路一系统硬件配置和软件设计方法,最后给出此微型可鳊程控制器在水塔水位控制中应用的实例。
上传时间: 2013-11-19
上传用户:adada
MCP定时器产生中心对称PWM输出:PWM波是一种脉宽可调的脉冲波,用于交、直流电机的电压控制。PWM一共有两种调整方法,一是定频调宽、另一种是定宽调频。其中定频调宽是种最常见的脉宽调制方式,它使脉冲波的频率保持不变,只调整脉冲宽度。同时定频调宽的PWM波形也分为两种,一种是单边的PWM,另一种是中心对称的双边PWM。中心对称的PWM主要应用在需要对称PWM波形的场合,如半桥、全桥的双极性驱动等。中心对称的PWM的生成原理如图1-2所示:定时计数器工作在连续增减计数方式,在计数初值设置为0且比较值小于周期值的条件下,当增计数过程中计数值和比较值匹配时置位输出,而在周期匹配时会改计数方向为减计数,当减计数过程中计数值和比较值匹配时复位输出,当减计数到零时会改计数方向为增计数,开始下一个循环。因此中心对称的PWM的周期为设定周期的二倍,占空比为:%100))((×−TPRNTPR(N为比较匹配数据,TPR为周期寄存器的值)。比较值的改变会影响PWM的两边的波形,并且两边相对高电平的中心对称,这便是中心对称双边PWM波形的特点。如果比较值为零,那么PWM将一直输出高电平;如比较值大于等于周期值,则PWM会一直输出低电平,占空比为0。
上传时间: 2013-11-13
上传用户:sammi
MCP定时器产生边沿PWM输出:PWM波是一种脉宽可调的脉冲波,用于交、直流电机的电压控制。PWM一共有两种调整方法,一是定频调宽、另一种是定宽调频。其中定频调宽是种最常见的脉宽调制方式,它使脉冲波的频率保持不变,只调整脉冲宽度。同时定频调宽的PWM波形也分为两种,一种是单边的PWM,另一种是中心对称的双边PWM。单边的PWM的生成原理如图1-2:定时计数器工作在增计数方式,在计数初值设置为0且比较值小于周期值的条件下,当计数值和比较值匹配时置位输出,而在周期匹配时复位输出,同时清零计数器,开始下一个循环。因此单边PWM的占空比为:%100))((×−TPRNTPR(N为比较匹配数据,TPR为周期寄存器的值)。比较值的改变只影响PWM的单边波形,这便是单边PWM波形的特点。如果比较值为零,那么PWM将一直输出高电平;如比较值同周期值相等,则PWM会输出一个时钟周期的低电平,占空比近似为0;当比较值大于周期值,那么PWM将一直输出低电平。
上传时间: 2013-11-07
上传用户:moerwang