虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

并联供电系统

  • IGBT超音频串联移相调功感应加热电源的研究.

    本文以超音频串联谐振式感应加热电源为研究对象,应用锁相环和PID技术,采用数字信号处理器(DSP)和复杂可编程逻辑器件(CPLD)联合控制的数字化技术实现感应加热电源的频率跟踪和0~1800自由移相调功,为感应加热电源系统的数字化、信息化、柔性化、智能化控制提供了优质、可靠的技术基础。论文首先介绍了感应加热的基本原理及感应加热技术的发展动态。然后通过对感应加热电源中的主电路拓扑进行分析,比较串联谱振逆变电路与并联谐振逆变电路的优缺点,选择了更适合超音频感应加热电源的串联语振主电路。在确定了设计方案后,详细分析了电源的主电路结构并进行了系统各组成部分器件的参数计算和选取。通过对锁相环原理进行了分析,提出一种基于DSP的数字锁相环(DPLL)的实现方法。论文在分析和对比了感应加热电源的各种调功方式后,选择了移相调功对感应加热电源进行恒流调节。通过两种硬件方案的对比,确定了一种最佳方案,实现了基准臂与移相臂之间移相角的数字控制信号的产生。论文搭建了以TMS320LF2407A为控制核心的硬件控制平台。包括了采样电路、保护电路、驱动电路、显示电路等外围电路。在此基础上编制了系统的程序,完成了样机,并对其进行了整机联调,给出了电源的实测波形。实验结果证明基于DSP的DPLL完全可以胜任超音频的频率跟踪,系统硬件电路可靠,程序运行良好。

    标签: igbt 音频 电源

    上传时间: 2022-06-19

    上传用户:20125101110

  • 微弱信号检测中的屏蔽和接地技术

    引言在微弱信号检测中,由于有用信号极其微弱,其量级通常低于1v,被强大的噪声所淹没,因此需设计低噪声放大器,在设计低噪声放大器时采用合理的屏蔽和接地技术,可以最大限度地降低外部的干扰、耦合等噪声,所以,正确掌握屏蔽和接地技术,对于设计优质的低噪声放大器有很重要的意义.屏蔽就是将放大器装在屏蔽罩内,屏蔽罩上带有一定的电位,以阻止不平衡源阻抗中所流过的电流,从而消除输入端的噪声电压,尤其是共模噪声的影响,接地则可以消除各电路回路流过地电阻所产生的噪声,避免地回路中噪声的耦合.1接地技术一个测量系统,总是由若干部件组成,各部件若电位不统一,会引起互相干扰。接地可以统一各部件的基本电位,这是接地的基本目标之一.正确的接地可以克服干扰的影响,但不得当的接地,甚至会加大干扰的影响,所以需研究接地方法。常见的接地方法有:单点串联接地,单点并联接地,多点接地,浮点接地.

    标签: 微弱信号检测 屏蔽 接地

    上传时间: 2022-06-19

    上传用户:

  • DIY手工制作电路板

    咱们不要再抱怨没地方找电路板了, 当我们的DIY 因为某个零件而受阻的时候, 我们应该考虑的是DIY这个零件!是不是又在检修用万能板搭出的电路?是不是苦于万能板搭不出自己想要的电路、布局?对于当今广大电子爱好者来说,万能板已经不能满足制作的需求,但是找厂家做PCB样板又不太划算, 几十元钱一块板,, 那就没有办法了么?感光板成本低廉, 制作方便, 可以轻易搭建出复杂的电路甚至是贴片电路,精度高。总之,方便,实用,是感光电路板的优势所在!马上就以最简单的20 颗“草帽” LED 并联电路来示范一下,教教大家如何发挥感光板的优势——整洁,方便,好用!1 材料和工具○ 感光电路板 x1 块○ 三氯化铁 x1 瓶,或者环保蚀刻剂x1 包○ 感光板显影剂 x1 包○ 透明胶 x1 卷○ 铅笔 x1● 台灯 x1● 玻璃片(越厚越好) x1● 塑料盆或保鲜盒 x1(注意一定是塑料的啊!!)● 美工刀 x1● 钢尺 x1● 电子称或天平 x1(除非你想一次把所有药品用完)● 秒表,手表,钟,能计时就行● 平头镊子 x1● 电钻,台钻,能打孔的就行了。注意要用细钻头! 0.8mm左右合适。

    标签: 电路板DIY

    上传时间: 2022-06-19

    上传用户:

  • 《射频通信电路设计》学习笔记

    《射频通信电路设计》学习笔记(一)1.1射频概念1864-1873年,英国物理学家麦克斯书通过电磁学的研究,提出了著名的Maxwell方程组,并在理论上预言了电磁波的存在。1887-1891年,德国物理学家赫兹通过电磁学实验首次证实了电磁波的存在901年,马可尼利用电磁波实现了横跨大西洋的无线通f1.2射频通信电路应用简介在电子通信系统中,只有使用更高的载波频率,才能获得更大的带宽。按照10%的带宽计算,有线电视系统中使用100MHz的载波可以获得10MHz的带宽1.3射频电路设计的特点1.3.1分布参数集总参数元件:指一个独立的局域性元件,能够在一定的频率范围内提供特定的电路性能。在低频电路设计中,可以把元件看作集总参数元件,认为元件的特性仅由二传手自身决定,元件的电磁场部集中在元件内部。如电容、电阻、电感等;一个电容的容抗是由电容自身的特性决定不会受周围元件的影响,如果把其他元件靠近这个电容器,其容抗不会随之产业化。分布参数元件:指一个元件的特性延伸扩展到一定的空间范围内,不再局限于元件自身。由于分布参数元件的电磁场分布在附近空间中,其特性要受周围环境的影响。同一个元件,在低频电路设计中可以看作是集总参数元件,但是在射频电路设计中可能需要作为分布参数元件进行处理。例如,一定长度的一段传输线,在低频电路中可以看作集总参数元件;在射频电路中,就必须看作分布参数元件。分布电容(Cp):指在元件自身封装、元件之间、元件到接地平面和线路板布线间形成非期t电容。分布电容与元件眯并联关系。分布电感(LD):指元件引脚、连线、线路板布线等形成的非期望电感。分布电感通常与元件为串联关系。

    标签: 射频通信 电路设计

    上传时间: 2022-06-21

    上传用户:

  • 串联锂电池主动均衡芯片ETA3000规格书

    ETA3000是一款针对串联锂电池的主动均衡芯片,可以将电压高的电池电量转移到电压低的,传统的被动均衡一般是通过并联电阻放电将高电压的电池放掉,目前这款芯片已经在项目上量产使用了,性能不错,均衡后电池压差只有几十mV。

    标签: 锂电池 eta3000

    上传时间: 2022-06-21

    上传用户:

  • R4850G2 整流模块用户手册

    R4850G2是一款高效率、高功率密度的数字 化整流模块,实现85V AC~300V AC输入, 53.5V DC默认输出的转换。具有软启动功能、 完善的保护功能、低噪音、可并联使用等优点。 采用最新电源监控技术,实现整流模块状态及负 载的实时监控,实现输出电压通过后台调节功能

    标签: r4850g2 整流模块

    上传时间: 2022-06-21

    上传用户:slq1234567890

  • 射频微波笔试题

    下面是北京和协航电科技有限公司的射频研发笔试题,答案是自己总结的,仅供参考1请简述锁相环的基本构成与工作原理,各主要部件的作用。2请说出产生线性调频信号的几种方法。3请简述AGC电路的基本工作原理。4请简述丙类放大器和线性放大器的主要区别。5请简述并联谐振电路的基本特性,画出阻抗曲线。6请用运放构建一个电压放大倍数为10的同向放大器。7请简述你对阻抗匹配的理解。8请简述低通滤波器的主要指标。9请简述线性稳压电离的基本工作原理。10请给出放大器绝对u4稳定的条件。相环由以下三个基本部件组成:鉴相器(PD)、环路滤波器(LPF)和压控振荡器(VCO)锁相环的工作原理:1,压控振荡器的输出经过采集并分频;2,和基准信号同时输入鉴相器:3,鉴相器通过比较上述两个信号的频率差,然后输出一个直流脉冲电压:4,控制vco,使它的频率改变;5,这样经过一个很短的时间,VcO的输出就会稳定于某一期望值。锁相环可用来实现输出和输入两个信号之间的相位同步。当没有基准(参考)输入信号时,环路滤波器的输出为零(或为某一固定值)。这时,压控振荡器按其固有频率fv进行自由振荡。当有频率为fr的参考信号输入时,Ur和Uv同时加到鉴相器进行鉴相。如果fr和fv相差不大,鉴相器对Ur和Uv进行鉴相的结果,输出一个与Ur和Uv的相位差成正比的误差电压Ud,再经过环路滤波器滤去Ld中的高频成分,输出一个控制电压Uc,Uc将使压控振荡器的频率fv(和相位)发生变化,朝着参考输入信号的频率靠拢,最后使fv=fr,环路锁定。环路一旦进入锁定状态后,压控振荡器的输出信号与环路的输入信号(参考信号)之间只有一个固定的稳态相位差,而没有频差存在。这时我们就称环路已被锁定。

    标签: 射频 微波

    上传时间: 2022-06-21

    上传用户:

  • 电子元器件系列知识—IGBT

    一、IGBT 驱动1 驱动电压的选择IGBT 模块GE 间驱动电压可由不同地驱动电路产生。典型的驱动电路如图1 所示。图1 IGBT 驱动电路示意图Q1,Q2 为驱动功率推挽放大,通过光耦隔离后的信号需通过Q1,Q2 推挽放大。选择Q1,Q2 其耐压需大于50V 。选择驱动电路时,需考虑几个因素。由于IGBT 输入电容较MOSFET 大,因此IGBT 关断时,最好加一个负偏电压,且负偏电压比MOSFET 大, IGBT 负偏电压最好在-5V~-10V 之内;开通时,驱动电压最佳值为15V 10% ,15V 的驱动电压足够使IGBT 处于充分饱和,这时通态压降也比较低,同时又能有效地限制短路电流值和因此产生的应力。若驱动电压低于12V ,则IGBT 通态损耗较大, IGBT 处于欠压驱动状态;若 VGE >20V ,则难以实现电流的过流、短路保护,影响 IGBT 可靠工作。2 栅极驱动功率的计算由于IGBT 是电压驱动型器件,需要的驱动功率值比较小,一般情况下可以不考虑驱动功率问题。但对于大功率IGBT ,或要求并联运行的IGBT 则需要考虑驱动功率。IGBT 栅极驱动功率受到驱动电压即开通VGE( ON )和关断 VGE( off ) 电压,栅极总电荷 QG 和开关 f 的影响。栅极驱动电源的平均功率 PAV 计算公式为:PAV =(VGE(ON ) +VGE( off ) )* QG *f对一般情况 VGE( ON ) =15V,VGE( off ) =10V,则 PAV 简化为: PAV =25* QG *f。f 为 IGBT 开关频率。栅极峰值电流 I GP 为:

    标签: 电子元器件 igbt

    上传时间: 2022-06-21

    上传用户:

  • 基于IGBT的150KHZ大功率感应加热电源的研究

    本文以感应加热电源为研究对象,阐述了感应加热电源的基本原理及其发展趋势。对感应加热电源常用的两种拓扑结构-电流型逆变器和电压型逆变器做了比较分析,并分析了感应加热电源的各种调功方式。在对比几种功率调节方式的基础上,得出在整流侧调功有利于高频感应加热电源频率和功率的提高的结论,选择了不控整流加软斩波器调功的感应加热电源作为研究对象,针对传统硬斩波调功式感应加热电源功率损耗大的缺点,采用软斩波调功方式,设计了一种零电流开关准诺振变换器ZCS-QRCs(Zero-current-switching-Quasi-resonant)倍频式串联 振高频感应加热电源。介绍了该软斩波调功器的组成结构及其工作原理,通过仿真和实验的方法研究了该软斩波器的性能,从而得出该软斩波器非常适合大功率高频感应加热电源应用场合的结论。同时设计了功率闭环控制系统和PI功率调节器,将感应加热电源的功率控制问题转化为Buck斩波器的电压控制问题。针对目前IGBT器件频率较低的实际情况,本文提出了一种新的逆变拓扑-通过IGBT的并联来实现倍频,从而在保证感应加热电源大功率的前提下提高了其工作频率,并在分析其工作原理的基础上进行了仿真,验证了理论分析的正确性,达到了预期的效果。另外,本文还设计了数字锁相环(DPLL),使逆变器始终保持在功率因数近似为1的状态下工作,实现电源的高效运行。最后,分析并设计了1GBT的缓冲吸收电路。本文第五章设计了一台150kHz,10KW的倍频式感应加热电源实验样机,其中斩波器频率为20kHz,逆变器工作频率为150kHz(每个IGBT工作频率为75kHz),控制孩心采用TI公司的TMS320F2812 DSP控制芯片,简化了系统结构。实验结果表明,该倍频式感应加热电源实现了斩波器和逆变器功率器件的软开关,有效的减小了开关损耗,并实现了数字化,提高了整机效率。文章给出了整机的结构设计,直流斩波部分控制框图,逆变控制框图,驱动电路的设计和保护电路的设计。同时,给出了关键电路的仿真和实验波形。

    标签: igbt 电源

    上传时间: 2022-06-22

    上传用户:

  • 一种新型的IGBT短路保护电路的设计

    固态电源的基本任务是安全、可靠地为负载提供所需的电能。对电子设备而言,电源是其核心部件。负载除要求电源能供应高质量的输出电压外,还对供电系统的可靠性等提出更高的要求IGBT是一种目前被广泛使用的具有自关断能力的器件,开关频率高,广泛应用于各类固态电源中。但如果控制不当,它很容易损坏。一般认为IGBT损坏的主要原因有两种:一是IGBT退出饱和区而进入了放大区,使得开关损耗增大;二是IGBT发生短路,产生很大的瞬态电流,从而使IGBT损坏。IGBT的保护通常采用快速自保护的办法,即当故障发生时,关断ICBT驱动电路,在驱动电路中实现退饱和保护;或者当发生短路时,快速地关断IGBT,根据监测对象的不同,ICBT的短路保护可分为U,监测法或U..监测法,二者原理基本相似,都是利用集电极电流1e升高时U,或U.也会升高这一现象。当U2或U..超过UtU.就自动关断IGBT的驱动电路。由于U,在发生故障时基本不变,而U.的变化较大,并且当退饱和发生时,U.变化也小,难以掌握,因而在实践中一般采用U.监测技术来对ICBT进行保护。本文研究的IGBT保护电路,是通过对IGBT导通时的管压降U.进行监测来实现对IGBT的保护。

    标签: igbt 短路保护 电路设计

    上传时间: 2022-06-22

    上传用户: