虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

带屏蔽<b>千兆</b>网口RJ45

  • 基于FPGA安全监控系统的数字视频处理

    随着经济的发展,生活水平的逐步提高,购置房屋和车辆的人越来越多,但安全问题也给人们带来巨大的经济损失。与此同时,相应的安全防盗系统也应运而生。目前市场上,低端的方案是利用单片机和通讯单元相结合构成系统。这种系统虽然价格便宜,实现起来也相对简单,但是功能不够完善,不能实现正真的影、音、像图文全方位监控。而高端的方案则使用专用集成电路,虽然功能强大,但是价格昂贵,并且对于新的接口标准存在兼容性问题,而且也不易升级。 基于FPGA的安全监控系统,是FPGA和通讯单元相结合的产物。其核心FPGA可多次配置,灵活性强,在性能和价格中找到一个很好的平衡。其易于维护和升级,以满足市场上不断推陈出的新的接口标准。 整个系统将是对视频图像处理、图像加密技术、传感器、PIC总线通讯等诸多技术的整合。而本文将侧重于论述该系统中视频图像处理、控制接口和视频传送部分的内容。全文分为五个章节,第一章简要介绍了视频信号处理的原理和结构,对一些专业术语进行介绍,并展示了通用的视频处理过程。第二章针对监控系统的案例,对视频信号处理模块的解决方案进行论述,将实际的视频信号处理划分为转换、计算和传送三个子模块,并且分别进行功能介绍。第三章着重介绍视频转换和视频计算两大模块,对相应的接口配置和模块主要代码实现作了深入分析。第四章将论述视频处理中的重要课题:数字图像的压缩技术,并对相应的重要模块和关键步骤作实际建模分析。第五章将探讨视频传送的相关技术,介绍传统的Camera-Link标准和最新的千兆以太网传送标准,对可行性应用进行了比较。

    标签: FPGA 安全监控 数字

    上传时间: 2013-04-24

    上传用户:hebmuljb

  • 微电脑型数学演算式隔离传送器

    特点: 精确度0.1%满刻度 可作各式數學演算式功能如:A+B/A-B/AxB/A/B/A&B(Hi or Lo)/|A|/ 16 BIT类比输出功能 输入与输出绝缘耐压2仟伏特/1分钟(input/output/power) 宽范围交直流兩用電源設計 尺寸小,穩定性高

    标签: 微电脑 数学演算 隔离传送器

    上传时间: 2014-12-23

    上传用户:ydd3625

  • 中兴通讯硬件巨作:信号完整性基础知识

    中兴通讯硬件一部巨作-信号完整性 近年来,通讯技术、计算机技术的发展越来越快,高速数字电路在设计中的运用越来 越多,数字接入设备的交换能力已从百兆、千兆发展到几十千兆。高速数字电路设计对信 号完整性技术的需求越来越迫切。 在中、 大规模电子系统的设计中, 系统地综合运用信号完整性技术可以带来很多好处, 如缩短研发周期、降低产品成本、降低研发成本、提高产品性能、提高产品可靠性。 数字电路在具有逻辑电路功能的同时,也具有丰富的模拟特性,电路设计工程师需要 通过精确测定、或估算各种噪声的幅度及其时域变化,将电路抗干扰能力精确分配给各种 噪声,经过精心设计和权衡,控制总噪声不超过电路的抗干扰能力,保证产品性能的可靠 实现。 为了满足中兴上研一所的科研需要, 我们在去年和今年关于信号完整性技术合作的基 础上,克服时间紧、任务重的困难,编写了这份硬件设计培训系列教材的“信号完整性” 部分。由于我们的经验和知识所限,这部分教材肯定有不完善之处,欢迎广大读者和专家 批评指正。 本教材的对象是所内硬件设计工程师, 针对我所的实际情况, 选编了第一章——导论、 第二章——数字电路工作原理、第三章——传输线理论、第四章——直流供电系统设计, 相信会给大家带来益处。同时,也希望通过我们的不懈努力能消除大家在信号完整性方面 的烦脑。 在编写本教材的过程中,得到了沙国海、张亚东、沈煜、何广敏、钟建兔、刘辉、曹 俊等的指导和帮助,尤其在审稿时提出了很多建设性的意见,在此一并致谢!

    标签: 中兴通讯 硬件 信号完整性 基础知识

    上传时间: 2013-11-15

    上传用户:大三三

  • 微电脑型数学演算式双输出隔离传送器

    特点(FEATURES) 精确度0.1%满刻度 (Accuracy 0.1%F.S.) 可作各式数学演算式功能如:A+B/A-B/AxB/A/B/A&B(Hi or Lo)/|A| (Math functioA+B/A-B/AxB/A/B/A&B(Hi&Lo)/|A|/etc.....) 16 BIT 类比输出功能(16 bit DAC isolating analog output function) 输入/输出1/输出2绝缘耐压2仟伏特/1分钟(Dielectric strength 2KVac/1min. (input/output1/output2/power)) 宽范围交直流两用电源设计(Wide input range for auxiliary power) 尺寸小,稳定性高(Dimension small and High stability)

    标签: 微电脑 数学演算 输出 隔离传送器

    上传时间: 2013-11-24

    上传用户:541657925

  • 六类线缆的隔离构件(工艺)

    在过去10年中,满足高带宽应用需要的布线技术发生了巨大的变化,布线系统所支持的带宽已从最初10MHz发展到今天的250MHz。2002年6月,TIA/EIA组织最终核准了六类布线标准,将所有厂商的布线产品实现标准化,而网络设备制造商也将保证它们的设备在六类布线上高速运行。应该说,六类系统的推出为人类从真正意义上跨入千兆网络的时代奠定了坚实的基础,但同时也带来了种种疑惑

    标签: 六类线缆 隔离构件 工艺

    上传时间: 2013-11-02

    上传用户:hzakao

  • 单片直接驱动数码管的计数器程序

      a_bit equ 20h ;个位数存放处   b_bit equ 21h ;十位数存放处   temp equ 22h ;计数器寄存器   star: mov temp,#0 ;初始化计数器   stlop: acall display   inc temp   mov a,temp   cjne a,#100,next ;=100重来   mov temp,#0   next: ljmp stlop   ;显示子程序   display: mov a,temp ;将temp中的十六进制数转换成10进制   mov b,#10 ;10进制/10=10进制   div ab   mov b_bit,a ;十位在a   mov a_bit,b ;个位在b   mov dptr,#numtab ;指定查表启始地址   mov r0,#4   dpl1: mov r1,#250 ;显示1000次   dplop: mov a,a_bit ;取个位数   MOVC A,@A+DPTR ;查个位数的7段代码   mov p0,a ;送出个位的7段代码

    标签: 直接驱动 数码管 计数器 程序

    上传时间: 2013-11-06

    上传用户:lx9076

  • MSP430系列flash型超低功耗16位单片机

    MSP430系列flash型超低功耗16位单片机MSP430系列单片机在超低功耗和功能集成等方面有明显的特点。该系列单片机自问世以来,颇受用户关注。在2000年该系列单片机又出现了几个FLASH型的成员,它们除了仍然具备适合应用在自动信号采集系统、电池供电便携式装置、超长时间连续工作的设备等领域的特点外,更具有开发方便、可以现场编程等优点。这些技术特点正是应用工程师特别感兴趣的。《MSP430系列FLASH型超低功耗16位单片机》对该系列单片机的FLASH型成员的原理、结构、内部各功能模块及开发方法与工具作详细介绍。MSP430系列FLASH型超低功耗16位单片机 目录  第1章 引 论1.1 MSP430系列单片机1.2 MSP430F11x系列1.3 MSP430F11x1系列1.4 MSP430F13x系列1.5 MSP430F14x系列第2章 结构概述2.1 引 言2.2 CPU2.3 程序存储器2.4 数据存储器2.5 运行控制2.6 外围模块2.7 振荡器与时钟发生器第3章 系统复位、中断及工作模式3.1 系统复位和初始化3.1.1 引 言3.1.2 系统复位后的设备初始化3.2 中断系统结构3.3 MSP430 中断优先级3.3.1 中断操作--复位/NMI3.3.2 中断操作--振荡器失效控制3.4 中断处理 3.4.1 SFR中的中断控制位3.4.2 中断向量地址3.4.3 外部中断3.5 工作模式3.5.1 低功耗模式0、1(LPM0和LPM1)3.5.2 低功耗模式2、3(LPM2和LPM3)3.5.3 低功耗模式4(LPM4)22 3.6 低功耗应用的要点23第4章 存储空间4.1 引 言4.2 存储器中的数据4.3 片内ROM组织4.3.1 ROM 表的处理4.3.2 计算分支跳转和子程序调用4.4 RAM 和外围模块组织4.4.1 RAM4.4.2 外围模块--地址定位4.4.3 外围模块--SFR4.5 FLASH存储器4.5.1 FLASH存储器的组织4.5.2 FALSH存储器的数据结构4.5.3 FLASH存储器的控制寄存器4.5.4 FLASH存储器的安全键值与中断4.5.5 经JTAG接口访问FLASH存储器39第5章 16位CPU5.1 CPU寄存器5.1.1 程序计数器PC5.1.2 系统堆栈指针SP5.1.3 状态寄存器SR5.1.4 常数发生寄存器CG1和CG25.2 寻址模式5.2.1 寄存器模式5.2.2 变址模式5.2.3 符号模式5.2.4 绝对模式5.2.5 间接模式5.2.6 间接增量模式5.2.7 立即模式5.2.8 指令的时钟周期与长度5.3 指令组概述5.3.1 双操作数指令5.3.2 单操作数指令5.3.3 条件跳转5.3.4 模拟指令的简短格式5.3.5 其他指令第6章 硬件乘法器6.1 硬件乘法器6.2 硬件乘法器操作6.2.1 无符号数相乘(16位×16位、16位×8位、8位×16位、8位×8位)6.2.2 有符号数相乘(16位×16位、16位×8位、8位×16位、8位×8位)6.2.3 无符号数乘加(16位×16位、16位×8位、8位×16位、8位×8位)6.2.4 有符号数乘加(16位×16位、16位×8位、8位×16位、8位×8位)6.3 硬件乘法器寄存器6.4 硬件乘法器的软件限制6.4.1 寻址模式6.4.2 中断程序6.4.3 MACS第7章 基础时钟模块7.1 基础时钟模块7.2 LFXT1与XT27.2.1 LFXT1振荡器7.2.2 XT2振荡器7.2.3 振荡器失效检测7.2.4 XT振荡器失效时的DCO7.3 DCO振荡器7.3.1 DCO振荡器的特性7.3.2 DCO调整器7.4 时钟与运行模式7.4.1 由PUC启动7.4.2 基础时钟调整7.4.3 用于低功耗的基础时钟特性7.4.4 选择晶振产生MCLK7.4.5 时钟信号的同步7.5 基础时钟模块控制寄存器7.5.1 DCO时钟频率控制7.5.2 振荡器与时钟控制寄存器7.5.3 SFR控制位第8章 输入输出端口8.1 引 言8.2 端口P1、P28.2.1 P1、P2的控制寄存器8.2.2 P1、P2的原理8.2.3 P1、P2的中断控制功能8.3 端口P3、P4、P5和P68.3.1 端口P3、P4、P5和P6的控制寄存器8.3.2 端口P3、P4、P5和P6的端口逻辑第9章 看门狗定时器WDT9.1 看门狗定时器9.2 WDT寄存器9.3 WDT中断控制功能9.4 WDT操作第10章 16位定时器Timer_A10.1 引 言10.2 Timer_A的操作10.2.1 定时器模式控制10.2.2 时钟源选择和分频10.2.3 定时器启动10.3 定时器模式10.3.1 停止模式10.3.2 增计数模式10.3.3 连续模式10.3.4 增/减计数模式10.4 捕获/比较模块10.4.1 捕获模式10.4.2 比较模式10.5 输出单元10.5.1 输出模式10.5.2 输出控制模块10.5.3 输出举例10.6 Timer_A的寄存器10.6.1 Timer_A控制寄存器TACTL10.6.2 Timer_A寄存器TAR10.6.3 捕获/比较控制寄存器CCTLx10.6.4 Timer_A中断向量寄存器10.7 Timer_A的UART应用 第11章 16位定时器Timer_B11.1 引 言11.2 Timer_B的操作11.2.1 定时器长度11.2.2 定时器模式控制11.2.3 时钟源选择和分频11.2.4 定时器启动11.3 定时器模式11.3.1 停止模式11.3.2 增计数模式11.3.3 连续模式11.3.4 增/减计数模式11.4 捕获/比较模块11.4.1 捕获模式11.4.2 比较模式11.5 输出单元11.5.1 输出模式11.5.2 输出控制模块11.5.3 输出举例11.6 Timer_B的寄存器11.6.1 Timer_B控制寄存器TBCTL11.6.2 Timer_B寄存器TBR11.6.3 捕获/比较控制寄存器CCTLx11.6.4 Timer_B中断向量寄存器第12章 USART通信模块的UART功能12.1 异步模式12.1.1 异步帧格式12.1.2 异步通信的波特率发生器12.1.3 异步通信格式12.1.4 线路空闲多机模式12.1.5 地址位多机通信格式12.2 中断和中断允许12.2.1 USART接收允许12.2.2 USART发送允许12.2.3 USART接收中断操作12.2.4 USART发送中断操作12.3 控制和状态寄存器12.3.1 USART控制寄存器UCTL12.3.2 发送控制寄存器UTCTL12.3.3 接收控制寄存器URCTL12.3.4 波特率选择和调整控制寄存器12.3.5 USART接收数据缓存URXBUF12.3.6 USART发送数据缓存UTXBUF12.4 UART模式,低功耗模式应用特性12.4.1 由UART帧启动接收操作12.4.2 时钟频率的充分利用与UART的波特率12.4.3 多处理机模式对节约MSP430资源的支持12.5 波特率计算 第13章 USART通信模块的SPI功能13.1 USART同步操作13.1.1 SPI模式中的主模式13.1.2 SPI模式中的从模式13.2 中断与控制功能 13.2.1 USART接收/发送允许位及接收操作13.2.2 USART接收/发送允许位及发送操作13.2.3 USART接收中断操作13.2.4 USART发送中断操作13.3 控制与状态寄存器13.3.1 USART控制寄存器13.3.2 发送控制寄存器UTCTL13.3.3 接收控制寄存器URCTL13.3.4 波特率选择和调制控制寄存器13.3.5 USART接收数据缓存URXBUF13.3.6 USART发送数据缓存UTXBUF第14章 比较器Comparator_A14.1 概 述14.2 比较器A原理14.2.1 输入模拟开关14.2.2 输入多路切换14.2.3 比较器14.2.4 输出滤波器14.2.5 参考电平发生器14.2.6 比较器A中断电路14.3 比较器A控制寄存器14.3.1 控制寄存器CACTL114.3.2 控制寄存器CACTL214.3.3 端口禁止寄存器CAPD14.4 比较器A应用14.4.1 模拟信号在数字端口的输入14.4.2 比较器A测量电阻元件14.4.3 两个独立电阻元件的测量系统14.4.4 比较器A检测电流或电压14.4.5 比较器A测量电流或电压14.4.6 测量比较器A的偏压14.4.7 比较器A的偏压补偿14.4.8 增加比较器A的回差第15章 模数转换器ADC1215.1 概 述15.2 ADC12的工作原理及操作15.2.1 ADC内核15.2.2 参考电平15.3 模拟输入与多路切换15.3.1 模拟多路切换15.3.2 输入信号15.3.3 热敏二极管的使用15.4 转换存储15.5 转换模式15.5.1 单通道单次转换模式15.5.2 序列通道单次转换模式15.5.3 单通道重复转换模式15.5.4 序列通道重复转换模式15.5.5 转换模式之间的切换15.5.6 低功耗15.6 转换时钟与转换速度15.7 采 样15.7.1 采样操作15.7.2 采样信号输入选择15.7.3 采样模式15.7.4 MSC位的使用15.7.5 采样时序15.8 ADC12控制寄存器15.8.1 控制寄存器ADC12CTL0和ADC12CTL115.8.2 转换存储寄存器ADC12MEMx15.8.3 控制寄存器ADC12MCTLx15.8.4 中断标志寄存器ADC12IFG.x和中断允许寄存器ADC12IEN.x15.8.5 中断向量寄存器ADC12IV15.9 ADC12接地与降噪第16章 FLASH型芯片的开发16.1 开发系统概述16.1.1 开发技术16.1.2 MSP430系列的开发16.1.3 MSP430F系列的开发16.2 FLASH型的FET开发方法16.2.1 MSP430芯片的JTAG接口16.2.2 FLASH型仿真工具16.3 FLASH型的BOOT ROM16.3.1 标准复位过程和进入BSL过程16.3.2 BSL的UART协议16.3.3 数据格式16.3.4 退出BSL16.3.5 保护口令16.3.6 BSL的内部设置和资源附录A 寻址空间附录B 指令说明B.1 指令汇总B.2 指令格式B.3 不增加ROM开销的模拟指令B.4 指令说明(字母顺序)B.5 用几条指令模拟的宏指令附录C MSP430系列单片机参数表附录D MSP430系列单片机封装形式附录E MSP430系列器件命名

    标签: flash MSP 430 超低功耗

    上传时间: 2014-04-28

    上传用户:sssnaxie

  • RS232串行接口电平转接器

    RS-232-C 是PC 机常用的串行接口,由于信号电平值较高,易损坏接口电路的芯片,与TTL电平不兼容故需使用电平转换电路方能与TTL 电路连接。本产品(转接器),可以实现任意电平下(0.8~15)的UART串行接口到RS-232-C/E接口的无源电平转接, 使用非常方便可靠。 什么是RS-232-C 接口?采用RS-232-C 接口有何特点?传输电缆长度如何考虑?答: 计算机与计算机或计算机与终端之间的数据传送可以采用串行通讯和并行通讯二种方式。由于串行通讯方式具有使用线路少、成本低,特别是在远程传输时,避免了多条线路特性的不一致而被广泛采用。 在串行通讯时,要求通讯双方都采用一个标准接口,使不同 的设备可以方便地连接起来进行通讯。 RS-232-C接口(又称 EIA RS-232-C)是目前最常用的一种串行通讯接口。它是在1970 年由美国电子工业协会(EIA)联合贝尔系统、 调制解调器厂家及计算机终端生产厂家共同制定的用于串行通讯的标准。它的全名是“数据终端设备(DTE)和数据通讯设备(DCE)之间串行二进制数据交换接口技术标准”该标准规定采用一个25 个脚的 DB25 连接器,对连接器的每个引脚的信号内容加以规定,还对各种信号的电平加以规定。(1) 接口的信号内容实际上RS-232-C 的25 条引线中有许多是很少使用的,在计算机与终端通讯中一般只使用3-9 条引线。(2) 接口的电气特性 在RS-232-C 中任何一条信号线的电压均为负逻辑关系。即:逻辑“1”,-5— -15V;逻辑“0” +5— +15V 。噪声容限为2V。即 要求接收器能识别低至+3V 的信号作为逻辑“0”,高到-3V的信号 作为逻辑“1”(3) 接口的物理结构 RS-232-C 接口连接器一般使用型号为DB-25 的25 芯插头座,通常插头在DCE 端,插座在DTE端. 一些设备与PC 机连接的RS-232-C 接口,因为不使用对方的传送控制信号,只需三条接口线,即“发送数据”、“接收数据”和“信号地”。所以采用DB-9 的9 芯插头座,传输线采用屏蔽双绞线。(4) 传输电缆长度由RS-232C 标准规定在码元畸变小于4%的情况下,传输电缆长度应为50 英尺,其实这个4%的码元畸变是很保守的,在实际应用中,约有99%的用户是按码元畸变10-20%的范围工作的,所以实际使用中最大距离会远超过50 英尺,美国DEC 公司曾规定允许码元畸变为10%而得出附表2 的实验结果。其中1 号电缆为屏蔽电缆,型号为DECP.NO.9107723 内有三对双绞线,每对由22# AWG 组成,其外覆以屏蔽网。2 号电缆为不带屏蔽的电缆。 2. 什么是RS-485 接口?它比RS-232-C 接口相比有何特点?答: 由于RS-232-C 接口标准出现较早,难免有不足之处,主要有以下四点:(1) 接口的信号电平值较高,易损坏接口电路的芯片,又因为与TTL 电平不兼容故需使用电平转换电路方能与TTL 电路连接。(2) 传输速率较低,在异步传输时,波特率为20Kbps。(3) 接口使用一根信号线和一根信号返回线而构成共地的传输形式, 这种共地传输容易产生共模干扰,所以抗噪声干扰性弱。(4) 传输距离有限,最大传输距离标准值为50 英尺,实际上也只能 用在50 米左右。针对RS-232-C 的不足,于是就不断出现了一些新的接口标准,RS-485 就是其中之一,它具有以下特点:1. RS-485 的电气特性:逻辑“1”以两线间的电压差为+(2—6) V 表示;逻辑“0”以两线间的电压差为-(2—6)V 表示。接口信号电平比RS-232-C 降低了,就不易损坏接口电路的芯片, 且该电平与TTL 电平兼容,可方便与TTL 电路连接。2. RS-485 的数据最高传输速率为10Mbps3. RS-485 接口是采用平衡驱动器和差分接收器的组合,抗共模干能力增强,即抗噪声干扰性好。4. RS-485 接口的最大传输距离标准值为4000 英尺,实际上可达 3000 米,另外RS-232-C接口在总线上只允许连接1 个收发器, 即单站能力。而RS-485 接口在总线上是允许连接多达128 个收发器。即具有多站能力,这样用户可以利用单一的RS-485 接口方便地建立起设备网络。因RS-485 接口具有良好的抗噪声干扰性,长的传输距离和多站能力等上述优点就使其成为首选的串行接口。 因为RS485 接口组成的半双工网络,一般只需二根连线,所以RS485接口均采用屏蔽双绞线传输。 RS485 接口连接器采用DB-9 的9 芯插头座,与智能终端RS485接口采用DB-9(孔),与键盘连接的键盘接口RS485 采用DB-9(针)。3. 采用RS485 接口时,传输电缆的长度如何考虑?答: 在使用RS485 接口时,对于特定的传输线经,从发生器到负载其数据信号传输所允许的最大电缆长度是数据信号速率的函数,这个 长度数据主要是受信号失真及噪声等影响所限制。下图所示的最大电缆长度与信号速率的关系曲线是使用24AWG 铜芯双绞电话电缆(线 径为0.51mm),线间旁路电容为52.5PF/M,终端负载电阻为100 欧 时所得出。(曲线引自GB11014-89 附录A)。由图中可知,当数据信 号速率降低到90Kbit/S 以下时,假定最大允许的信号损失为6dBV 时, 则电缆长度被限制在1200M。实际上,图中的曲线是很保守的,在实 用时是完全可以取得比它大的电缆长度。 当使用不同线径的电缆。则取得的最大电缆长度是不相同的。例 如:当数据信号速率为600Kbit/S 时,采用24AWG 电缆,由图可知最 大电缆长度是200m,若采用19AWG 电缆(线径为0。91mm)则电缆长 度将可以大于200m; 若采用28AWG 电缆(线径为0。32mm)则电缆 长度只能小于200m。

    标签: 232 RS 串行接口 电平

    上传时间: 2013-10-11

    上传用户:时代电子小智

  • 基于FPGA的高速串行传输接口研究与实现

    摘 要:介绍了FPGA最新一代器件Virtex25上的高速串行收发器RocketIO。基于ML505开发平台构建了一个高速串行数据传输系统,重点说明了该系统采用RocketIO实现1. 25Gbp s高速串行传输的设计方案。实现并验证了采用FPGA完成千兆串行传输的功能目标,为后续采用FPGA实现各种高速协议奠定了良好的基础。关键词: FPGA;高速串行传输; RocketIO; GTP 在数字系统互连设计中,高速串行I/O技术取代传统的并行I/O技术成为当前发展的趋势。与传统并行I/O技术相比,串行方案提供了更大的带宽、更远的距离、更低的成本和更高的扩展能力,克服了并行I/O设计存在的缺陷。在实际设计应用中,采用现场可编程门阵列( FPGA)实现高速串行接口是一种性价比较高的技术途径。

    标签: FPGA 高速串行 传输接口

    上传时间: 2013-11-22

    上传用户:lingzhichao

  • WLAN及在千兆以太网MAC中的实现

    WLAN

    标签: WLAN MAC 千兆以太网 中的实现

    上传时间: 2014-12-29

    上传用户:fhjdliu