MOSFET和IGBT内部结构不同, 决定了其应用领域的不同.1, 由于MOSFET的结构, 通常它可以做到电流很大, 可以到上KA,但是前提耐压能力没有IGBT强。2,IGBT 可以做很大功率, 电流和电压都可以, 就是一点频率不是太高, 目前IGBT硬开关速度可以到100KHZ,那已经是不错了. 不过相对于MOSFET的工作频率还是九牛一毛,MOSFET可以工作到几百KHZ,上MHZ,以至几十MHZ,射频领域的产品.3, 就其应用, 根据其特点:MOSFET应用于开关电源, 镇流器, 高频感应加热, 高频逆变焊机, 通信电源等等高频电源领域;IGBT 集中应用于焊机, 逆变器, 变频器,电镀电解电源, 超音频感应加热等领域开关电源 (Switch Mode Power Supply ;SMPS) 的性能在很大程度上依赖于功率半导体器件的选择,即开关管和整流器。虽然没有万全的方案来解决选择IGBT还是MOSFET的问题,但针对特定SMPS应用中的IGBT 和 MOSFET进行性能比较,确定关键参数的范围还是能起到一定的参考作用。本文将对一些参数进行探讨,如硬开关和软开关ZVS ( 零电压转换) 拓扑中的开关损耗,并对电路和器件特性相关的三个主要功率开关损耗—导通损耗、传导损耗和关断损耗进行描述。此外,还通过举例说明二极管的恢复特性是决定MOSFET或 IGBT 导通开关损耗的主要因素, 讨论二极管恢复性能对于硬开关拓扑的影响。导通损耗除了IGBT的电压下降时间较长外, IGBT和功率MOSFET的导通特性十分类似。由基本的IGBT等效电路(见图1)可看出,完全调节PNP BJT集电极基极区的少数载流子所需的时间导致了导通电压拖尾( voltage tail )出现。
上传时间: 2022-06-21
上传用户:
本文只是论述由单只IGBT管子或双管做成的逆变模块,及其有关测量和判断好坏的方法。IPM模块不在本文讨论内容之内。场效应管子有开关速度快、电压控制的优点,但也有导通压降大,电压与电流容量小的缺点。而双极型器件恰恰有与其相反的特点,如电流控制、导通压降小,功率容量大等,二者复合,正所谓优势互补。IGBT管子,或者1GBT模块的由来,即基于此。从结构上看,类似于我们都早已熟悉的复合放大管,输出管为一只PNP型三极管,而激励管是一只场效应管,后者的漏极电流形成了前者的基极电流。放大能力是两管之积。IGBT管子的等效电路及符号如下图:
上传时间: 2022-06-21
上传用户:jiabin
MOD(模式选择)MOD 输入,可以选择工作模式直接模式如果MOD 输入没有连接(悬空) ,或连接到VCC,选择直接模式,死区时间由控制器设定。该模式下,两个通道之间没有相互依赖关系。输入INA 直接影响通道1,输入INB直接影响通道2。在输入( INA 或INB )的高电位, 总是导致相应IGBT 的导通。每个IGBT接收各自的驱动信号。半桥模式如果MOD 输入是低电位(连接到GND),就选择了半桥模式。死区时间由驱动器内部设定, 该模式下死区时间Td 为3us。输入INA 和INB 具有以下功能: 当INB 作为使能输入时, INA 是驱动信号输入。当输入INB 是低电位,两个通道都闭锁。如果INB 电位变高,两个通道都使能,而且跟随输入INA 的信号。在INA 由低变高时,通道2 立即关断, 1 个死区时间后,通道1 导通。只
上传时间: 2022-06-21
上传用户:
在UPS中使用的功率器件有双极型功率品体管、功率 MOSFET、可控硅和IGBT IGBT既有功率MOSFET 易于驱动,控制简单、开关频率高的优点,又有功率品体管的导通电压低,通态电流大的优点、使用 IGBT成为UPS功率设计的首选,只有对 IGBT的特性充分了解和对电路进行可靠性设计,才能发挥 IGBT的优点。本文介绍UPS中的IGBT的应用情况和使用中的注意事项。2.IGBT在UPS中的应用情况绝缘栅双极型晶体管(IGBT)是一种MOSFET 与双极晶体管复合的器件。据东芝公司资料,1200V/100A 的IGBT的导通电阻是同一耐压规格的功率 MOSFET 的1/10,而开关时间是同规格 GTR的1/10。由于这些优点,IGBT广泛应用于不间断电源系统(UPS)的设计中。这种使用 IGBT的在线式UPS具有效率高,抗冲击能力强、可靠性高的显著优点。UPS主要有后备式、在线互动式和在线式三种结构。在线式 UPS以其可靠性高,输出电压稳定,无中断时间等显著优点,广泛用于通信系统、税务、金融、证券、电力、铁路、民航、政府机关的机房中。本文以在线式为介绍对象,UPS中的1GBT的应用。
上传时间: 2022-06-22
上传用户:
固态电源的基本任务是安全、可靠地为负载提供所需的电能。对电子设备而言,电源是其核心部件。负载除要求电源能供应高质量的输出电压外,还对供电系统的可靠性等提出更高的要求IGBT是一种目前被广泛使用的具有自关断能力的器件,开关频率高,广泛应用于各类固态电源中。但如果控制不当,它很容易损坏。一般认为IGBT损坏的主要原因有两种:一是IGBT退出饱和区而进入了放大区,使得开关损耗增大;二是IGBT发生短路,产生很大的瞬态电流,从而使IGBT损坏。IGBT的保护通常采用快速自保护的办法,即当故障发生时,关断ICBT驱动电路,在驱动电路中实现退饱和保护;或者当发生短路时,快速地关断IGBT,根据监测对象的不同,ICBT的短路保护可分为U,监测法或U..监测法,二者原理基本相似,都是利用集电极电流1e升高时U,或U.也会升高这一现象。当U2或U..超过UtU.就自动关断IGBT的驱动电路。由于U,在发生故障时基本不变,而U.的变化较大,并且当退饱和发生时,U.变化也小,难以掌握,因而在实践中一般采用U.监测技术来对ICBT进行保护。本文研究的IGBT保护电路,是通过对IGBT导通时的管压降U.进行监测来实现对IGBT的保护。
上传时间: 2022-06-22
上传用户:
IGBT(Insulated Gate Bipolar Transistor)绝缘栅双极型品体管,是由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式功率半导体器件,兼有MOSFEt高输入阻抗和GT的低导通压降两方面的优点。IGB综合了以上两种器件的优点,驱动功率小而饱和压降低。成为功率半导体器件发展的主流,广泛应用于风电、光伏、电动汽车、智能电网等行业中。在电动汽车行业中,电机控制器、辅助动力系统,电动空调中,IGBT有着广泛的使用,大功率IGB多应用于电机控制器中,由于电动汽车电机控制器工作环境干扰比较大,IGBT的门极分布电容及实际开关中存在的米勒效应等寄生参数的直接影响到驱动电路的可靠性1电机控制器在使用过程中,在过流、短路和过压的情况下要对1GBT实行比较完善的保护。过流会引起电机控制器的温度上升,可通过温度传感器来进行检测,并由相应的电路来实现保护;过压一般发生在IGBT关断时,较大的di/dt会在寄生电感上产生了较高的电压,可通过采用缓冲电路来钳制,或者适当降低开关速率。短路故障发生后瞬时就会产生极大的电流,很快就会损坏1GBT,主控制板的过流保护根本来不及,必须由硬件电路控制驱动电路瞬间加以保护。因此驱动器的设计过程中,保护功能设计得是否完善,对系统的安全运行尤其重要。
上传时间: 2022-06-22
上传用户:XuVshu
怎样判断IGBT MOS管的好坏?怎么检测它的引脚?IGBT1、判断极性首先将万用表拨在R×1KΩ 挡,用万用表测量时, 若某一极与其它两极阻值为无穷大,调换表笔后该极与其它两极的阻值仍为无穷大, 则判断此极为栅极(G )。其余两极再用万用表测量, 若测得阻值为无穷大, 调换表笔后测量阻值较小。在测量阻值较小的一次中,则判断红表笔接的为集电极( C);黑表笔接的为发射极(E)。2、判断好坏将万用表拨在R×10KΩ 挡,用黑表笔接IGBT 的集电极(C),红表笔接IGBT 的发射极( E),此时万用表的指针在零位。用手指同时触及一下栅极( G)和集电极(C),这时IGBT 被触发导通,万用表的指针摆向阻值较小的方向,并能站住指示在某一位置。然后再用手指同时触及一下栅极( G)和发射极( E),这时IGBT 被阻断,万用表的指针回零。此时即可判断IGBT 是好的。3、注意事项任何指针式万用表皆可用于检测IGBT。注意判断IGBT 好坏时,一定要将万用表拨在R×10KΩ 挡,因R×1KΩ 挡以下各档万用表内部电池电压太低,检测好坏时不能使IGBT 导通,而无法判断IGBT 的好坏。此方法同样也可以用于检测功率场效应晶体管( P-MOSFET )的好坏。现在经常要检测MOS 管了,转几篇MOS 管的检测方法,以备随时观摩!用万用表检测MOS 开关管好坏的方法一、MOS 开关管针脚判断:在电脑上, MOS 管都是N 沟道增强型的MOSFET 开关管, 大部分都采用TO-220F 封装,其针脚判断方法是:将针脚向下,印有型号的面向自己,左边的是栅极,中间是漏极,右边是源极。
上传时间: 2022-06-22
上传用户:
电磁炉烧坏IGBT 功率管的八种因素在电磁炉维修中,功率管的损坏占有相当大的比例,若在没有查明故障原因的情况下贸然更换功率管会引起再次烧毁。一:谐振电容和滤波电容损坏0.3uF/1200V 谐振电容、5uF/400V 滤波电容损坏或容量不足若0.3uF/1200V 谐振电容、5uF/400V 滤波电容容量变小、失效或特性不良,将导致电磁炉LC 振荡电路频率偏高,从而引起功率管IGBT管损坏,经查其他电路无异常时,我们必须将0.3uF 和5uF 电容一起更换。二:IGBT 管激励电路异常振荡电路输出的脉冲信号不能直接控制IGBT 管饱和、导通与截至,必须通过激励电路将脉冲信号放大来完成。如果激励电路出现故障,高电压就会加到IGBT 管的G 极,导致IGBT 管瞬间击穿损坏。常见为驱动管S8050、S8550损坏。三:同步电路异常同步电路在电磁炉中的主要是保证加到IGBT G 极上的开关脉冲前沿与IGBT 管上VCE 脉冲后沿同步。当同步电路工作异常时, 导致IGBT管瞬间击穿损坏。
上传时间: 2022-06-22
上传用户:
工作原理分析,主要分析电阻负载时的情况:1,任一相导通须和另一相构成回路,因此,和三相全控整流电路一样,电流流通路径中有两个晶闸管,所以应采用双脉冲或宽脉冲触发。2,三相的触发脉冲依次相差120",同一相的两个反并联晶闸管触发脉冲应相差180因此触发脉冲顺序和三相桥式全控整流电路一样,为VTI vT6,依次相差6003,如果把晶闸管换成二极管可以看出,相电流和相电压同相位,且相电压过零食二极管开始导通。因此把相电压过零点定为触发延迟角a的起点,三相三线电路中,两相间导通是靠线电压导通的,而线电压超前相电压30",因此,a角移范围是0~ 150根据任一时刻导通晶闸管个数及半个周波内电流是否连续,可将0"-150"的移相范围分为如下三段:(1)0"< a<60":电路处于三管导通与两管导通交替,每管导通180"-a。但a-0时是种特殊情况,一直是三管导通。(2)60"<a< 90:任一时刻都是两管导通,每管的导通角都是120(3)90"<a< 150":电路处于两管号通与无晶同管导通交替状态,每个晶闸管导通角为300-2a。而且这个导通角被分割为不连续的两部分,在半周波内形成两个断续的波头,各占150"-a.
上传时间: 2022-06-22
上传用户:bluedrops
STM32最小系统硬件组成详解0组成: 电源 复位 时钟 调试接口 启动1、电源 : 一般3.3V LDO供电 加多个0.01uf去耦电容2、复位:有三种复位方式:上电复位、手动复位、程序自动复位通常低电平复位:(51单片机高电平复位,电容电阻位置调换)上电复位,在上电瞬间,电容充电,RESET出现短暂的低电平,该低电平持续时间由电阻和电容共同决定,计算方式如下:t = 1.1RC(固定计算公式) 1.1*10K*0.1uF=1.1ms需求的复位信号持续时间约在1ms左右。手动复位:按键按下时,RESET和地导通,从而产生一个低电平,实现复位。
上传时间: 2022-06-24
上传用户:jiabin