虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

导孔

  • 计算方法上机实习题目

    第一种边界条件下的三次样条插值问题(高斯消元法) 题目 计算方法上机实习题目(二) ——第一种边界条件下的三次样条插值问题(高斯消元法) 已知直升飞机旋转机翼外形曲线轮廓线上的某些型值点(见表)及端点处的一阶导数值 y' (x ) = 1.86548, y' (x ) = -0.046115

    标签: 计算方法上机实习题目

    上传时间: 2020-06-27

    上传用户:zg250

  • 第一性原理研究MoS2的电子结构及光学性质

    为了系统深入地研究MoS2的电子能带结构和光电性质,基于密度泛函理论的第一性原理平面波赝势方 法,计算和分析了材料MoS2的电子结构及其光学性质,给出了MoS2 的能带结构、光吸收谱、电子态密度、能 量损失谱、反射谱、介电函数谱等光学性质。计算结果表明:体材料MoS2的电子跃迁形式是非垂直跃迁,具有 间接带隙的半导体材料,带隙宽为1.126 eV;价带和导带的形成是由Mo和S 的价电子起作用产生的。通过分析 其光学性质,发现MoS2的介电函数的实部和虚部的峰值都出现在低能区,当光子能量的升高,介电函数值会缓 慢降低;材料MoS2对可见紫外区域的光子具有很强的吸收,最大吸收系数为3.17×105cm-1;MoS2在能量为18.33eV 位置出现了共振现象,其它区域内能量的损失值都趋于为0,说明电子之间共振非常微弱。这些光学性质奠定了 该材料在制作微电子和光电子器件方面的作用,尤其是在紫外探测器应用方面有着潜在的应用前景,为未来对 MoS2材料的进一步研究提供理论参考。

    标签: MoS2 电子结构 光学

    上传时间: 2020-11-08

    上传用户:

  • 电磁场理论

    磁场理论,清华大学电子与信息技术系列教材。王 蔷 李国定 龚 克 编著 详细讲述电内 容 提 要 本书系统地介绍了电磁场理论的基本内容 , 包括静电场、恒定磁场、准静态场、 时变场、电磁波在无界空间的自由传播、导波和电磁波的激励。比较系统地介绍了 求解电磁问题的几种严格的解析方法 ,也讨论了近年来出现的计算电磁学中常用 的几种数值计算方法的基本原理, 并介绍了电磁场理论在电磁兼容性中的应用。 为便于读者掌握基本理论 , 对重要的物理概念从不同的角度加以阐述 ,并在各章中 都列出了较多的典型例题和习题。 该书适于作为高等院校无线电技术专业本科生的教材 , 也可供从事电磁场理 论、微波技术、天线和电磁兼容性领域工作的科技人员阅读和参考。

    标签: 电磁场

    上传时间: 2021-01-15

    上传用户:

  • pcb设计规范

         如果 PCB 用排线连接,控制排线对应的插头插座必须成直线,不交叉、不扭曲。      连续的 40PIN 排针、排插必须隔开 2mm 以上。      考虑信号流向,合理安排布局,使信号流向尽可能保持一致。      输入、输出元件尽量远离。      电压的元器件应尽量放在调试时手不易触及的地方。      驱动芯片应靠近连接器。      有高频连线的元件尽可能靠近,以减少高频信号的分布参数和电磁干扰。      对于同一功能或模组电路,分立元件靠近芯片放置。      连接器根据实际情况必须尽量靠边放置。      开关电源尽量靠近输入电源座。      BGA 等封装的元器件不应放于 PCB 板正中间等易变形区      BGA 等阵列器件不能放在底面, PLCC 、 QFP 等器件不宜放在底层。      多个电感近距离放置时应相互垂直以消除互感。      元件的放置尽量做到模块化并连线最短。      在保证电气性能的前提下,尽量按照均匀分布、重心平衡、版面美观的标准优化布局。      按电路模块进行布局,实现同一功能的相关电路称为一个模块,电路模块中的元件应采用就近集 中原则,同时数字电路和模拟电路分开;      定位孔、标准孔等非安装孔周围 1.27mm  内不得贴装元、器件,螺钉等安装孔周围 紧固件安装孔、椭圆孔及板中其它方孔外侧距板边的尺寸大于 3mm ;      发热元件不能紧邻导线和热敏元件;高热器件要均衡分布;

    标签: pcb 设计规范

    上传时间: 2021-06-25

    上传用户:xiangshuai

  • BUCKBOOST电路原理分析

    BUCKBOOST电路原理分析uck变换器:也称降压式变换器,是一种输出电压小于输入电压的单管不隔离直流变换器。                                                 图中,Q为开关管,其驱动电压一般为PWM(Pulse、width、modulation脉宽调制)信号,信号周期为Ts,则信号频率为f=1/Ts,导通时间为Ton,关断时间为Toff,则周期Ts=Ton+Toff,占空比Dy=、Ton/Ts。 Boost变换器:也称升压式变换器,是一种输出电压高于输入电压的单管不隔离直流变换器。 开关管Q也为PWM控制方式,但最大占空比Dy必须限制,不允许在Dy=1的状态下工作。电感Lf在输入侧,称为升压电感。Boost变换器也有CCM和DCM两种工作方式 Buck/Boost变换器:也称升降压式变换器,是一种输出电压既可低于也可高于输入电压的单管不隔离直流变换器,但其输出电压的极性与输入电压相反。Buck/Boost变换器可看做是Buck变换器和Bo

    标签: buckboost 电路

    上传时间: 2021-10-18

    上传用户:

  • Generalplus 无线充电5V方案 PCB Layout Guide V1.

    Generalplus 无线充电5V方案 PCB Layout Guide V1.GENERALPLUS 无线充电 5V 方案 PCB LAYOUT GUIDE ............................................................................................ 1 1 元件摆放 .......................................................................................................................................................................... 4 1.1 电源 VDD 电容要求 ...................................................................................................................................................... 4 1.2 MCU VDD 电容要求....................................................................................................................................................... 5 1.3 驱动部分......................................................................................................................................................................... 5 1.4 EMI 测试预留电容.......................................................................................................................................................... 6 2 电源 VDD 走线................................................................................................................................................................ 7 2.1 电源接口走线 ................................................................................................................................................................. 7 2.2 VPP 驱动线圈走线.......................................................................................................................................................... 7 2.3 NMOS 的 S 极................................................................................................................................................................. 9 2.4 VDD 走线过孔 .............................................................................................................................................................. 10 3 GND 走线........................................................................................................................................................................11 3.1 驱动电路的 

    标签: generalplus 无线充电

    上传时间: 2021-10-20

    上传用户:得之我幸78

  • SPWM波产生.

    电路主要包括以下七个单元电路:正弦波产生电路、正弦波放大及电平变换电路、峰值检测电路、增益控制电路、三角波产生电路、比较电路、低通滤波电路。正弦波产生电路采用文氏桥正弦波振荡电路,由放大电路、反馈电路(正反馈)、选频网络(和反馈电路一起)、稳幅电路构成,它的振荡频率为:f=1/(2Π*RC),由R4和C1构成RC并联振荡,产生正弦波,与R5和C2构成选频网络,同时R5和C2又构成该电路的正反馈;稳幅电路是由该电路的负反馈构成,当振幅过大时,二极管导通,R3短路,Av=1+(R2+R3)/R1减小,振幅减小,反之Av=1+(R2+R3)/R1增大,振幅增大,达到稳幅效果,从而保证正弦波的正常产生。正弦波放大及电平变换电路由R10,R7分别与R15滑动电阻部分相连,通过滑动R15来分VCC和VEE的电压,通过放大器正相来抬高或降低正弦波来达到特定范围内的幅值,滑动电阻R6与地相连,又与放大器反相端相连,滑动R6分压来改变振幅,后又由R9和R8构成反馈来达到放大的效果,从而达到正弦波放大及电平变化的目的。峰值检测电路是由正弦波放大及电平变换电路产生的正弦波送入电压跟随器的正相端,通过两个反向二极管后再连电容,快速充放电达到峰值,然后再送回正弦波放大及电平变换电路的反相端,构成负反馈,达到增益稳幅控制效果三角波产生电路主要由两个NPN型三极管Q3Q4,一个PNP型三极管Q2,两个电容C3C4,两个非门,一个滑动电阻R16组成,通过充放电后经过非门产生三角波。比较电路产生的正弦波送入放大器的正相端,产生的三角波送入放大器的反相端,通过作差比较产SPWM波,后又经过由R22和C8组成的低通滤波电路,还原正弦波。

    标签: spwm 产生

    上传时间: 2021-10-30

    上传用户:

  • 先进的高压大功率器件——原理 特性和应用

    本书共11章。 第1章简要介绍了高电压功率器件的可能应用, 定义了理想功率开关的电特性, 并与典型器件的电特性进行了比较。 第2章和第3章分析了硅基功率晶闸管和碳化硅基功率晶闸管。 第4章讨论了硅门极关断 (GTO) 晶闸管结构。 第5章致力于分析硅基IGBT结构, 以提供对比分析的标准。 第6章和第7章分析了碳化硅MOSFET和碳化硅IGBT的结构。 碳化硅MOSFET 和IGBT的结构设计重点在于保护栅氧化层, 以防止其提前击穿。 另外, 必须屏蔽基区,以避免扩展击穿。 这些器件的导通电压降由沟道电阻和缓冲层设计所决定。 第8章和第9章讨论了金属氧化物半导体控制晶闸(MCT) 结构和基极电阻控制晶闸管 (BRT) 结构, 后者利用MOS栅控制晶闸管的导通和关断。 第10章介绍了发射极开关晶闸(EST), 该种结构也利用一种MOS栅结构来控制晶闸管的导通与关断, 并可利用IGBT加工工艺来制造。 这种器件具有良好的安全工作区。本书最后一章比较了书中讨论的所有高压功率器件结构。本书的读者对象包括在校学生、 功率器件设计制造和电力电子应用领域的工程技术人员及其他相关专业人员。 本书适合高等院校有关专业用作教材或专业参考书, 亦可被电力电子学界和广大的功率器件和装置生产企业的工程技术人员作为参考书之用。

    标签: 大功率器件

    上传时间: 2021-11-02

    上传用户:

  • 走向数学丛书 凸性 [史树中 著] 2011年版

    “走向数学”小丛书,每本小册子尽量用深入浅出的语言来讲述数学的某一问题或方面,使工程技术人员、非数学专业的大学生,甚至具有中学数学水平的人,亦能懂得书中全部或部分含义与内容。这对提高我国人民的数学修养与水平,可能会起些作用。史树中所著的《凸性》主要介绍了凸集定义、凸集承托定理及其解析证明、凸函数的定义、凸性不等式、凸函数的导数性质、凸函数的次微分和共轭函数、凸分析的两条基本定理及凸规划等。

    标签: 凸性

    上传时间: 2021-11-03

    上传用户:nhhrzh

  • SiC MOSFET为什么会使用4引脚封装

    ROHM最近推出了SiCMOSFET的新系列产品“SCT3xxxxR系列”。SCT3xxxxR系列采用最新的沟槽栅极结构,进一步降低了导通电阻;同时通过采用单独设置栅极驱动器用源极引脚的4引脚封装,改善了开关特性,使开关损耗可以降低35%左右。此次,针对SiCMOSFET采用4引脚封装的原因及其效果等议题,我们采访了ROHM株式会社的应用工程师。关于SiCMOSFET的SCT3xxxxR系列,除了导通电阻很低,还通过采用4引脚封装使开关损耗降低了35%,对此我们非常感兴趣。此次,想请您以4引脚封装为重点介绍一下该产品。首先,请您大致讲一下4引脚封装具体是怎样的封装,采用这种封装的背景和目的是什么。首先,采用4引脚封装是为了改善SiCMOSFET的开关损耗。包括SiCMOSFET在内的电源开关用MOSFET和IGBT,被作为开关元件广泛应用于各种电源应用和电源线路中。必须尽可能地降低这种开关元件产生的开关损耗和传导损耗,但不同的应用,其降低损耗的方法也不尽相同。作为其中的一种手法,近年来发布了一种4引脚的新型封装,即在MOSFET的源极、漏极、栅极三个引脚之外,另外设置了驱动器源极引脚。此次的SCT3xxxxR系列,旨在通过采用最新的沟槽栅极结构,实现更低的导通电阻和传导损耗;通过采用4引脚封装,进一步发挥出SiC本身具有的高速开关性能,并降低开关损耗。那么,我想详细了解一下刚刚您的概述中出现的几个要点。首先,什么是“驱动器源极引脚”?驱动器源极引脚是应用了开尔文连接原理的源极引脚。开尔文连接是通过电阻测量中的4个引脚或四线检测方式,在电流路径基础上加上两条测量电压的线路,以极力消除微小电阻测量或大电流条件下测量时不可忽略的线缆电阻和接触电阻的影响的方法,是一种广为人知的方法。这种4引脚封装仅限源极,通过使连接栅极驱动电路返回线的源极电压引脚与流过大电流的电源源极引脚独立,来消除ID对栅极驱动电路的影响。

    标签: sic mosfet 封装

    上传时间: 2021-11-07

    上传用户: