在变流器故障诊断系统中,通过MATLAB对牵引变流器建立故障仿真模型,提取故障特征,对输入输出数据进行标幺化和模糊化的处理,并基于改进的动量BP神经网络算法,完成对变流器开关管开路的诊断,误差满足要求范围,结果表明:该算法收敛迅速,能避免陷入局部极值,而且准确率很高,是一种快速有效的方法。
上传时间: 2013-11-09
上传用户:familiarsmile
针对传统PID控制系统参数整定过程存在的在线整定困难和控制品质不理想等问题,结合BP神经网络自学习和自适应能力强等特点,提出采用BP神经网络优化PID控制器参数。其次,为了加快BP神经网络学习收敛速度,防止其陷入局部极小点,提出采用粒子群优化算法来优化BP神经网络的连接权值矩阵。最后,给出了PSO-BP算法整定优化PID控制器参数的详细步骤和流程图,并通过一个PID控制系统的仿真实例来验证本文所提算法的有效性。仿真结果证明了本文所提方法在控制品质方面优于其它三种常规整定方法。
上传时间: 2014-03-21
上传用户:diets
神经网络控制、模糊神经元控制、自适应控制等技术在电机传动系统中的运用
上传时间: 2013-10-13
上传用户:wff
人工神经网络java工具箱源代码 包含BP网络,K分类和RBF网络
上传时间: 2013-12-18
上传用户:lepoke
落煤残存瓦斯量的确定是采掘工作面瓦斯涌出量预测的重要环节,它直接影响着采掘工作面瓦斯涌出量预测的精度,并与煤的变质程度、落煤粒度、原始瓦斯含量、暴露时间等影响因素呈非线性关系。人工神经网络具有表示任意非线性关系和学习的能力,是解决复杂非线性、不确定性和时变性问题的新思想和新方法。基于此,作者提出自适应神经网络的落煤残存瓦斯量预测模型,并结合不同矿井落煤残存瓦斯量的实际测定结果进行验证研究。结果表明,自适应调整权值的变步长BP神经网络模型预测精度高,收敛速度快 该预测模型的应用可为采掘工作面瓦斯涌出量的动态预测提供可靠的基础数据,为采掘工作面落煤残存瓦斯量的确定提出了一种全新的方法和思路。
上传时间: 2015-03-12
上传用户:熊少锋
这是我自己花了很多时间写的一个BP神经网络类,里面封装了网络初始化、训练、分类等功能。奉献出来与感兴趣的朋友分享,绝对可靠。
标签: BP神经网络
上传时间: 2014-10-13
上传用户:x4587
这是一个我自己编写的JAVA程序,可以运行的。思想是将KMEANS和神经网络结合起来实现模式的分类。
上传时间: 2015-03-18
上传用户:JIUSHICHEN
神经网络的源程序,一个比较新的算法,分类效果较好!
上传时间: 2014-01-15
上传用户:yyyyyyyyyy
基于GMM的概率神经网络PNN具有良好的泛化能力,快速的学习能力,易于在线更新,并具有统计学的贝叶斯估计理论基础,已成为一种解决像说话人识别、文字识别、医疗图像识别、卫星云图识别等许多实际困难分类问题的很有效的工具。而且PNN不但具有GMM的大部分优点,还具有许多GMM没有的优点,如强鲁棒性,需要更少的训练语料,可以和其他网络其他理论无缝整合等。
上传时间: 2014-01-02
上传用户:zhaiyanzhong
由java开发的软件包,里面有人工智能所用的很多东东,包括神经网络,支持向量机,决策树等分类和回归分析方法,集成化软件哦!
上传时间: 2014-11-15
上传用户:sxdtlqqjl