数字D类音频放大器,也叫数字脉冲调制放大器,具有效率高,低电压,低失真的特点,在低成本,高性能的消费类产品特别是便携式设备中得到越来越广泛的应用。数字D类放大器包括数字脉冲宽度调制(PWM)和输出级(含低通滤波器)两个部分,数字PWM又包括两个部分,采样处理和脉冲产生。传统的采样处理算法运算复杂,硬件实现成本高,面积大,从而导致功耗也大,不适合当今向低功耗发展的趋势。 本文在传统算法的基础上提出了一种新的算法,该算法不包括乘法或者除法这些计算复杂和非常消耗硬件资源的单元,只含加法和减法运算。在推导出该算法的傅立叶表达式后,在MATLAB的simulink中建立系统模型进行仿真以验证算法的可行性,在输入信号频率为1kHZ,采样频率为48kHZ,电源电压为10V,输出负载为4Ω的条件下,得到的总谐波失真为0.12%,符合D类放大器的性能要求。本文还在基于Xilinx公司的Spartan-3系列FPGA的基础上实现了该算法的电路结构,综合结果表明,实现基于本文算法的数字D类音频系统所需要的硬件资源大大减少,从而减少了功耗。 关键词:D类放大器;脉冲宽度调制;采样算法;数字音频放大器;FPGA
上传时间: 2013-07-19
上传用户:zhuoying119
H.264作为新一代视频编码标准,相比上一代视频编码标准MPEG2,在相同画质下,平均节约64﹪的码流。该标准仅设定了码流的语法结构和解码器结构,实现灵活性极大,其规定了三个档次,每个档次支持一组特定的编码功能,并支持一类特定的应用,因此。H.264的编码器的设计可以根据需求的不同而不同。 H.264虽然具有优异的压缩性能,但是其复杂度却比一般编码器高的多。本文对H.264进行了编码复杂度分析,并统计了整个软件编码中计算量的分布。H.264中采用了率失真优化算法,提高了帧内预测编码的效率。在该算法下进行帧内预测时,为了得到一个宏块的预测模式,需要进行592次率失真代价计算。因此为了降低帧内预测模式选择的计算复杂度,本文改进了帧内预测模式选择算法。实践证明,在PSNR值的损失可以忽略不计的情况下,该算法相比原算法,帧内编码时间平均节约60﹪以上,对编码的实时性有较大帮助。 为了实现实时编码,考虑到FPGA的高效运算速度和使用灵活性,本文还研究了H.264编码器基本档次的FPGA实现。首先研究了H.264编码器硬件实现架构,并对影响编码速度,且具有硬件实现优越性的几个重要部分进行了算法研究和FPGA.实现。本文主要研究了H.264编码器中整数DCT变换、量化、Zig-Zag扫描、CAVLC编码以及反量化、逆整数DCT变换等部分。分别对这些模块进行了综合和时序仿真,并将验证后通过的系统模块下载到Xilinx virtex-Ⅱ Pro的FPGA中,进行了在线测试,验证了该系统对输入的残差数据实时压缩编码的功能。 本文对H.264编码器帧内预测模式选择算法的改进,算法实现简单,对软件编码的实时性有很大帮助。本文对在单片FPGA上实现H.264编码器做出了探索性尝试,这对H.264编码器芯片的设计有着积极的借鉴性。
上传时间: 2013-06-13
上传用户:夜月十二桥
随着科学技术的发展与公共安全保障需求的提高,视频监控系统在工业生产、日常生活、警备与军事方面的应用越来越广泛。采用基于 FPGA 的SOPC技术、H.264压缩编码技术和网络传输控制技术实现网络视频监控系统,在稳定性、功能、成本与扩展性等方面都有着突出的优势,具有重要的学术意义与实用意义, 本课题所设计的网络视频监控系统由以Nios Ⅱ为核心的嵌入式图像服务器、相关网络设备与若干PC机客户端组成。嵌入式图像服务器实时采集图像,采用H.264 编码算法进行压缩,并持续监听网络。PC机客户端可通过网络对服务器进行远程访问,接收编码数据,使用H.264解码算法重建图像并实时显示,使监控人员有效地掌握现场情况, 在嵌入式图像服务器设计阶段,本文首先进行了芯片选型与开发平台选择。然后构建图像采集子系统,采用双缓存乒乓交换的方法设计图像采集用户自定义模块。接着设计双Nios Ⅱ架构的SOPC系统,阐述了双软核设计中定制连接、内存芯片共享、数据搬移、通信与互斥的解决方法。同时完成了网络服务器的设计,采用μC/OS-Ⅱ进行多任务的管理与调度, H.264视频压缩编解码算法设计与实现是本文的重点。文中首先分析H.264.标准,规划编解码器结构。接着设计了16×16帧内预测算法,并设计宏块扫描方式,采用两次判决策略进行预测模式选择。然后设计4×4子块扫描方式,编写整数变换与量化算法程序。熵编码采用Exp-Golomb编码与CAVLC相结合的方案,针对除拖尾系数之外的非零系数值编码子算法,实现了一种基于表示范围判别的编码方法。最后设计了网络传输的码流组成格式,并针对编码算法设计相应解码算法。使用VC++完成算法验证,并进行测试,观察不同参数下压缩率与失真度的变化。 算法验证完成后,本文进行了PC机客户端设计,使其具有远程访问、H.264解码与实时显示的功能。同时将H.264 编码算法程序移植到NiosⅡ中,并将嵌入式图像服务器与若干客户端接入网络进行联合调试,构建完整的网络视频监控系统, 实验结果表明,本系统视频压缩率高,监控图像质量良好,充分证明了系统软硬件与图像编解码算法设计成功。本系统具有成本低、扩展性好及适用范围广等优点,发展前景十分广阔。
上传时间: 2013-04-24
上传用户:wang0123456789
本文研究特种LCD的图像处理方法和FPGA实现方案,并研制出基于FPGA的若干实际应用系统,有效地解决目前存在的问题。本文主要研究内容为: (1)给出一种基于彩色空间变换的色彩调整方法,在YCrCb空间内实现亮度和色度分离,避免了RGB空间两者同时变化造成偏色和失真的现象,并在FPGA内采用流水线结构改进3阶矩阵运算的逻辑结构,节省出2/3的逻辑资源,提高了模块的最高运行速度。 (2)研究利用FPGA实现图像实时缩放处理的方法,选择能够满足特种LCD要求的双线性插值法作为研究对象,实时计算插值系数dx和dy,并采用流水线结构进行插值计算,仅使用FPGA中的3个双端口RAM来缓冲图像数据,没有外扩大容量帧存储器,降低了成本,提高特种LCD的系统兼容性。 (3)设计一种针对特种LCD更为简捷、有效的隔行转逐行扫描的实现方案,即利用图像实时缩放的方法,把一场图像缩放到LCD的分辨率,实现复合视频图像在LCD的“满屏”显示,改善现有特种LCD在显示隔行扫描的复合视频信号时,遇到图像信息丢失或显示效果不佳的问题。 (4)设计出一种基于字符和位图的数字OSD控制核,合理使用分布式RAM和块RAM两种逻辑资源来存储字符和位图信息,OSD图像由数字逻辑自动合成,编程简单灵活,使特种LCD的参数调整更加方便。 (5)研制成功基于FPGA的特种LCD显示控制板,能显示三种分辨率640×480,800×600,1024×768的图像信号;支持宽范围的亮度、对比度、显示位置等参数的实时调整,并提供全功能的透明OSD菜单进行指示。 (6)研制成功基于FPGA的特种LCD图像调节板,用于对某型号机载特种LCD进行改造,增加宽范围的亮度、对比度、图像显示位置的实时调整功能,提供无信号输入检测与OSD指示功能,提高图像显示的性能,通过了环境温度试验与性能测试,并已装机。 (7)研制成功基于DSP和FPGA的图像采集显示板,实现了对全分辨率复合视频信号进行25帧/秒的实时采集和显示,在DSP内使用“三帧”轮换的图像数据缓冲方法提高了系统的实时处理能力,使之能够完成一定复杂度的实时图像处理。
上传时间: 2013-06-12
上传用户:ivan-mtk
频率合成技术广泛应用于通信、航空航天、仪器仪表等领域。目前,常用的频率合成技术有直接式频率合成,锁相频率合成和直接数字频率合成(DDS)。本次设计是利用FPGA完成一个DDS系统并利用该系统实现模拟信号的数字化调频。 DDS是把一系列数字量形式的信号通过D/A转换形成模拟量形式的信号的合成技术。主要是利用高速存储器作查寻表,然后通过高速D/A转换器产生已经用数字形式存入的正弦波(或其他任意波形)。一个典型的DDS系统应包括:相位累加器,可在时钟的控制下完成相位的累加;相位码—幅度码转换电路,一般由ROM实现;DA转换电路,将数字形式的幅度码转换成模拟信号。DDS系统可以很方便地获得频率分辨率很精细且相位连续的信号,也可以通过改变相位字改变信号的相位,因此也广泛用于数字调频和调相。本次数字化调频的基本思想是利用AD转换电路将模拟信号转换成数字信号,同时用该数字信号与一个固定的频率字累加,形成一个受模拟信号幅度控制的频率字,从而获得一个频率受模拟信号的幅度控制的正弦波,即实现了调频。该DDS数字化调频方案的硬件系统是以FPGA为核心实现的。使用Altera公司的ACEX1K系列FPGA,整个系统由VHDL语言编程,开发软件为MAX+PLUSⅡ。经过实际测试,该系统在频率较低时与理论值完全符合,但在高频时,受器件速度的限制,波形有较大的失真。
上传时间: 2013-06-14
上传用户:ljt101007
One can make a low distortion tuneable oscillatorby incorporating an active filter inside an AGC
上传时间: 2013-04-24
上传用户:wangxuan
表面粗糙度是机械加工中描述工件表面微观形状重要的参数。在机械零件切削的过程中,刀具或砂轮遗留的刀痕,切屑分离时的塑性变形和机床振动等因素,会使零件的表面形成微小的蜂谷。这些微小峰谷的高低程度和间距状况就叫做表面粗糙度,也称为微观不平度。表面粗糙度的测量是几何测量中的一个重要部分,它对于现代制造业的发展起了重要的推动作用。世界各国竞相进行粗糙度测量仪的研制,随着科学技术的发展,各种各样的粗糙度测量系统也竞相问世。对于粗糙度的测量,随着技术的更新,国家标准也一直在变更。最新执行的国家标准(GB/T6062-2002),规定了粗糙度测量的参数,以及制定了触针式测量粗糙度的仪器标准[1]。 随着新国家标准的执行,许多陈旧的粗糙度测量仪已经无法符合新标准的要求。而且生产工艺的提高使得原有方案的采集精度和采集速度,满足不了现代测量技术的需要。目前,各高校公差实验室及大多数企业的计量部门所使用的计量仪器(如光切显微镜、表面粗糙度检查仪等)只能测量单项参数,而能进行多参数测量的光电仪器价格较贵,一般实验室和计量室难以购置。因此如何利用现有的技术,结含现代测控技术的发展,职制出性能可靠的粗糙度测量仪,能有效地降低实验室测量仪器的成本,具有很好的实用价值和研究意义。 基于上述现状,本文在参考旧的触针式表面粗糙度测量仪技术方案的基础上,提出了一种基于ARM嵌入式系统的粗糙度测量仪的设计。这种测量仪采用了先进的传感器技术,保证了测量的范围和精度;采用了集成的信号调理电路,降低了信号在调制、检波、和放大的过程中的失真;采用了ARM处理器,快速的采集和控制测量仪系统;采用了强大的PC机人机交互功能,快速的计算粗糙度的相关参数和直观的显示粗糙度的特性曲线。 论文主要做了如下工作:首先,论文分析了触针式粗糙度测量仪的发展以及现状;然后,详细叙述了系统的硬件构成和设计,包括传感器的原理和结构分析、信号调理电路的设计、A/D转换电路的设计、微处理器系统电路以及与上位机接口电路的设计。同时,还对系统的数据采集进行了研究,开发了相应的固件程序及接口程序,完成数据采集软件的编写,并且对表面粗糙度参数的算法进行程序的实现。编写了控制应用程序,完成控制界面的设计。最终设计出一套多功能、多参数、高性能、高可靠、操作方便的表面粗糙度测量系统。
上传时间: 2013-04-24
上传用户:KIM66
SystemView的库资源十分丰富,包括含若干图标的基本库(Main Library)及专业库(Optional Library),基本库中包括多种信号源、接收器、加法器、乘法器,各种函数运算器等;专业库有通讯(Communication)、逻辑(Logic)、数字信号处理(DSP)、射频/模拟(RF/Analog)等;它们特别适合于现代通信系统的设计、仿真和方案论证,尤其适合于无线电话、无绳电话、寻呼机、调制解调器、卫星通讯等通信系统;并可进行各种系统时域和频域分析、谱分析,及对各种逻辑电路、射频/模拟电路(混合器、放大器、RLC电路、运放电路等)进行理论分析和失真分析。 System View能自动执行系统连接检查,给出连接错误信息或尚悬空的待连接端信息,通知用户连接出错并通过显示指出出错的图标。这个特点对用户系统的诊断是十分有效的。 System View的另一重要特点是它可以从各种不同角度、以不同方式,按要求设计多种滤波器,并可自动完成滤波器各指标—如幅频特性(伯特图)、传递函数、根轨迹图等之间的转换。 在系统设计和仿真分析方面,System View还提供了一个真实而灵活的窗口用以检查、分析系统波形。在窗口内,可以通过鼠标方便地控制内部数据的图形放大、缩小、滚动等。另外,分析窗中还带有一个功能强大的“接收计算器”,可以完成对仿真运行结果的各种运算、谱分析、滤波。 System View还具有与外部文件的接口,可直接获得并处理输入/输出数据。提供了与编程语言VC++或仿真工具Matlab的接口,可以很方便的调用其函数。还具备与硬件设计的接口:与Xilinx公司的软件Core Generator配套,可以将System View系统中的部分器件生成下载FPGA芯片所需的数据文件;另外,System View还有与DSP芯片设计的接口,可以将其DSP库中的部分器件生成DSP芯片编程的C语言源代码。
标签: SYSTEMVIEW 教材
上传时间: 2013-04-24
上传用户:doudouzdz
UM71系列(包括ZPW-2000A)无绝缘轨道电路已成为我国铁路的主流制式,轨道电路的正常工作对行车安全意义重大。轨道信号失真或者受到噪声污染有可能导致铁路信号设备错误动作进而发生行车事故。通过对铁路信号做出监测以及判断,可以帮助信号设备维护人员对故障设备进行及时修复从而避免事故发生。 本文设计了一种基于ARM/DSP双核结构的铁路信号测试仪,用以帮助设备维护人员及时检修故障设备。其中,DSP芯片选用TI公司的32位浮点处理器TMS320VC33作为信号分析与处理的核心,实现信号的解调、频谱分析和细化处理等功能。本测试仪作为一种实时的信号检测设备,充分利用了浮点DSP芯片高效灵活以及系统可裁减的特性,因而更适合于现场环境的应用。本测试仪主要针对目前使用较为广泛的UM71、ZPW-2000A系统以及站内25Hz相敏轨道电路,实现对移频信号的数字解调、区间载波频率检测、信号幅度检测、站内轨道信号的相位角及其幅度检测等功能。 本文着重分析了频谱细化技术中的ZFFT算法在实时信号分析中的应用,采用ZFFT算法可以在保证运算效率的同时提高频谱的分辨率。在此基础上,本文就这种算法提出了若干改进措施并且通过MATLAB对该算法及其改进措施进行了软件仿真。同时本文完成了基于这种算法的DSP软件设计:为了提高系统实时性,DSP算法均采用汇编语言实现。理论分析和实验表明调制频率的分辨率可以达到0.03Hz,满足实际应用要求。此外,本文设计了测试仪的硬件结构,主要是VC33的外围器件及其与双口RAMCY7C028的接口电路,以及基于这个接口电路的通信规程。
上传时间: 2013-06-29
上传用户:qazwsxedc
H.264作为新一代视频编码标准,相比上一代视频编码标准MPEG2,在相同画质下,平均节约64﹪的码流。该标准仅设定了码流的语法结构和解码器结构,实现灵活性极大,其规定了三个档次,每个档次支持一组特定的编码功能,并支持一类特定的应用,因此。H.264的编码器的设计可以根据需求的不同而不同。 H.264虽然具有优异的压缩性能,但是其复杂度却比一般编码器高的多。本文对H.264进行了编码复杂度分析,并统计了整个软件编码中计算量的分布。H.264中采用了率失真优化算法,提高了帧内预测编码的效率。在该算法下进行帧内预测时,为了得到一个宏块的预测模式,需要进行592次率失真代价计算。因此为了降低帧内预测模式选择的计算复杂度,本文改进了帧内预测模式选择算法。实践证明,在PSNR值的损失可以忽略不计的情况下,该算法相比原算法,帧内编码时间平均节约60﹪以上,对编码的实时性有较大帮助。 为了实现实时编码,考虑到FPGA的高效运算速度和使用灵活性,本文还研究了H.264编码器基本档次的FPGA实现。首先研究了H.264编码器硬件实现架构,并对影响编码速度,且具有硬件实现优越性的几个重要部分进行了算法研究和FPGA.实现。本文主要研究了H.264编码器中整数DCT变换、量化、Zig-Zag扫描、CAVLC编码以及反量化、逆整数DCT变换等部分。分别对这些模块进行了综合和时序仿真,并将验证后通过的系统模块下载到Xilinx virtex-Ⅱ Pro的FPGA中,进行了在线测试,验证了该系统对输入的残差数据实时压缩编码的功能。 本文对H.264编码器帧内预测模式选择算法的改进,算法实现简单,对软件编码的实时性有很大帮助。本文对在单片FPGA上实现H.264编码器做出了探索性尝试,这对H.264编码器芯片的设计有着积极的借鉴性。
上传时间: 2013-05-25
上传用户:refent