本文对燃料电池车用DC/DC变换器的基本原理以及控制策略进行了较为详尽的分析和讨论,对基于ARM的DC/DC变换器控制系统的软硬件设计作了较为详尽的论述,对控制系统的电磁兼容作了详细的研究并给出了提高电磁兼容能力的措施。本文介绍了本课题研究的背景,燃料电池电动汽车的特性和研究的目的与意义并分析了大功率DC/DC变换器主电路的拓扑结构、工作原理和电磁兼容环境。在此基础上,从控制电路的最小系统、检测系统、脉冲发生系统以及驱动电路、CAN通讯电路等方面重点讨论了DC/DC变换器控制系统的硬件设计以及驱动电路的设计。本文在DC/DC变换器电感电流连续状态空间小信号数学模型的基础上,应用MATLAB软件对大功率DC/DC变换器单环控制系统进行了建模和仿真分析,给出了具有实际指导意义的结论,设计了基于ARM控制系统的软件结构并编写了相应的软件代码。此外,本文从硬件和软件两个方面重点讨论了控制系统的电磁兼容以及抗干扰措施。在系统硬件和软件基础上进行了功率试验并给出了试验结果以及今后改进的方向。
上传时间: 2013-05-28
上传用户:思琦琦
为了解决现有环形线圈车检器在工程应用中出现的误检问题,尤其是对同一辆大车的多次误触发问题,本文深入研究导致误检现象的具体原因,并在这基础上提出了一套软硬件的解决方法,以减少误触发现象,提高检测的准确率。 为了方便测量与调试,本文设计了一个PC端软件。它与实验室原有的频率采集工具一块配合工作,能实时而直观地察看车检器的工作状况,从而有利于实验数据的采集与问题分析。通过实验分析,本文总结了误检现象的若干情形,以及导致误检问题的主要原因。 针对上述分析的发现—车检器采用的单一阈值法不能适应复杂的应用环境,本文对检测算法作了改进:对车辆到达的检测,仍采用单一阈值法;对车辆离开的检测,则采用平坦性判定法。后者利用了在车辆离开时,线圈频率从非平坦变为平坦这一特征。它有简单、易移植和防误检的特点。 为了从应用层面解决问题,本文设计了一种基于改进算法的车检器。与同类车检器相比,它除了集成上述车检算法外,还提供一个RS-232的测试端口,按一定的数据协议与PC端的诊断软件通讯,能够帮助现场测试工作的开展。 本文还利用了新车检器做了两组的实验:实验室环境与高速公路车辆检测现场环境下的实验。第一组验证了改进算法的防误检性能,并计算它的检测延迟。其中检测延迟的计算,有助于协调车辆检测系统中线圈、车检器与摄像头三者间的工作。第二组验证了新车检器的检测性能,包括识别和延迟两方面内容。两组实验结果都证实了改进算法的实用价值。
上传时间: 2013-06-16
上传用户:1406054127
本文对燃料电池车用DC/DC变换器的基本原理以及控制策略进行了较为详尽的分析和讨论,对基于ARM的DC/DC变换器控制系统的软硬件设计作了较为详尽的论述,对控制系统的电磁兼容作了详细的研究并给出了提高电磁兼容能力的措施。本文介绍了本课题研究的背景,燃料电池电动汽车的特性和研究的目的与意义并分析了大功率DC/DC变换器主电路的拓扑结构、工作原理和电磁兼容环境。在此基础上,从控制电路的最小系统、检测系统、脉冲发生系统以及驱动电路、CAN通讯电路等方面重点讨论了DC/DC变换器控制系统的硬件设计以及驱动电路的设计。本文在DC/DC变换器电感电流连续状态空间小信号数学模型的基础上,应用MATLAB软件对大功率DC/DC变换器单环控制系统进行了建模和仿真分析,给出了具有实际指导意义的结论,设计了基于ARM控制系统的软件结构并编写了相应的软件代码。此外,本文从硬件和软件两个方面重点讨论了控制系统的电磁兼容以及抗干扰措施。在系统硬件和软件基础上进行了功率试验并给出了试验结果以及今后改进的方向。
上传时间: 2013-07-12
上传用户:wao1005
矿井加暖系统在矿产、冶金、化工等工业中具有广泛的应用。课题组根据热效率、寿命、自动化程度等方面存在的问题,经过调查、分析和研究开发了一套新型矿用环保热风炉系统,该系统主要由数据采集系统、火焰监测系统和主机控制系统三部分组成。 数据采集系统,要对复杂的现场环境进行监测控制,是整个新型热风炉自动控制系统的关键。本文设计的数据采集系统由MSP430单片机、模拟量采集(A/D)、模拟量输出(D/A)、开关量采集、开关量输出、存储、通信接口及其他辅助电路组成,结构简单、机构可靠性高,使用寿命长,能够对系统的各种现场数据进行实时监测和控制,对于矿井的安全可靠生产具有重要的意义。
上传时间: 2013-04-24
上传用户:yph853211
特点: 精确度0.1%满刻度 可作各式數學演算式功能如:A+B/A-B/AxB/A/B/A&B(Hi or Lo)/|A|/ 16 BIT类比输出功能 输入与输出绝缘耐压2仟伏特/1分钟(input/output/power) 宽范围交直流兩用電源設計 尺寸小,穩定性高
上传时间: 2014-12-23
上传用户:ydd3625
为了满足井下复杂的运行环境及井下避难硐室对电池电源运行稳定、安全可靠、大电流输出等关键要求,结合MAX17830芯片的特点,提出一种全新的电池电源管理系统构架和硬件解决方案。系统以MAX17830为核心,采用飞思卡尔的Kinets系列中的k10处理器,集成uC/OS-Ⅱ嵌入式实时操作系统,以高灵活性和高可靠性的方式提供了一套电池电源管理方案,具有电池管理所需要的数据采集、状态监控、安全管理、均衡管理和通信等各种功能
上传时间: 2013-10-26
上传用户:Togetherheronce
基于嵌入式实时操作系统的OBD-II诊断协议框架,以Cortex-M3为内核,采用uc/os II操作系统实现了ISO15765协议,成功通过CAN总线读取了车辆的OBD-II系统数据,通过上位机监控窗口,能实时检查汽车故障码与汽车传感器数据。可在此基础上评价汽车健康状况,并可对故障及早预防,降低行车成本,提供行车安全性;本设计充分考虑中国汽车市场主流总线发展的情况,提供了在复杂的车载环境下远程车载诊断设备的解决方案。
上传时间: 2013-11-19
上传用户:爱死爱死
特点(FEATURES) 精确度0.1%满刻度 (Accuracy 0.1%F.S.) 可作各式数学演算式功能如:A+B/A-B/AxB/A/B/A&B(Hi or Lo)/|A| (Math functioA+B/A-B/AxB/A/B/A&B(Hi&Lo)/|A|/etc.....) 16 BIT 类比输出功能(16 bit DAC isolating analog output function) 输入/输出1/输出2绝缘耐压2仟伏特/1分钟(Dielectric strength 2KVac/1min. (input/output1/output2/power)) 宽范围交直流两用电源设计(Wide input range for auxiliary power) 尺寸小,稳定性高(Dimension small and High stability)
上传时间: 2013-11-24
上传用户:541657925
/*--------- 8051内核特殊功能寄存器 -------------*/ sfr ACC = 0xE0; //累加器 sfr B = 0xF0; //B 寄存器 sfr PSW = 0xD0; //程序状态字寄存器 sbit CY = PSW^7; //进位标志位 sbit AC = PSW^6; //辅助进位标志位 sbit F0 = PSW^5; //用户标志位0 sbit RS1 = PSW^4; //工作寄存器组选择控制位 sbit RS0 = PSW^3; //工作寄存器组选择控制位 sbit OV = PSW^2; //溢出标志位 sbit F1 = PSW^1; //用户标志位1 sbit P = PSW^0; //奇偶标志位 sfr SP = 0x81; //堆栈指针寄存器 sfr DPL = 0x82; //数据指针0低字节 sfr DPH = 0x83; //数据指针0高字节 /*------------ 系统管理特殊功能寄存器 -------------*/ sfr PCON = 0x87; //电源控制寄存器 sfr AUXR = 0x8E; //辅助寄存器 sfr AUXR1 = 0xA2; //辅助寄存器1 sfr WAKE_CLKO = 0x8F; //时钟输出和唤醒控制寄存器 sfr CLK_DIV = 0x97; //时钟分频控制寄存器 sfr BUS_SPEED = 0xA1; //总线速度控制寄存器 /*----------- 中断控制特殊功能寄存器 --------------*/ sfr IE = 0xA8; //中断允许寄存器 sbit EA = IE^7; //总中断允许位 sbit ELVD = IE^6; //低电压检测中断控制位 8051
上传时间: 2013-10-30
上传用户:yxgi5
TLC2543是TI公司的12位串行模数转换器,使用开关电容逐次逼近技术完成A/D转换过程。由于是串行输入结构,能够节省51系列单片机I/O资源;且价格适中,分辨率较高,因此在仪器仪表中有较为广泛的应用。 TLC2543的特点 (1)12位分辩率A/D转换器; (2)在工作温度范围内10μs转换时间; (3)11个模拟输入通道; (4)3路内置自测试方式; (5)采样率为66kbps; (6)线性误差±1LSBmax; (7)有转换结束输出EOC; (8)具有单、双极性输出; (9)可编程的MSB或LSB前导; (10)可编程输出数据长度。 TLC2543的引脚排列及说明 TLC2543有两种封装形式:DB、DW或N封装以及FN封装,这两种封装的引脚排列如图1,引脚说明见表1 TLC2543电路图和程序欣赏 #include<reg52.h> #include<intrins.h> #define uchar unsigned char #define uint unsigned int sbit clock=P1^0; sbit d_in=P1^1; sbit d_out=P1^2; sbit _cs=P1^3; uchar a1,b1,c1,d1; float sum,sum1; double sum_final1; double sum_final; uchar duan[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f}; uchar wei[]={0xf7,0xfb,0xfd,0xfe}; void delay(unsigned char b) //50us { unsigned char a; for(;b>0;b--) for(a=22;a>0;a--); } void display(uchar a,uchar b,uchar c,uchar d) { P0=duan[a]|0x80; P2=wei[0]; delay(5); P2=0xff; P0=duan[b]; P2=wei[1]; delay(5); P2=0xff; P0=duan[c]; P2=wei[2]; delay(5); P2=0xff; P0=duan[d]; P2=wei[3]; delay(5); P2=0xff; } uint read(uchar port) { uchar i,al=0,ah=0; unsigned long ad; clock=0; _cs=0; port<<=4; for(i=0;i<4;i++) { d_in=port&0x80; clock=1; clock=0; port<<=1; } d_in=0; for(i=0;i<8;i++) { clock=1; clock=0; } _cs=1; delay(5); _cs=0; for(i=0;i<4;i++) { clock=1; ah<<=1; if(d_out)ah|=0x01; clock=0; } for(i=0;i<8;i++) { clock=1; al<<=1; if(d_out) al|=0x01; clock=0; } _cs=1; ad=(uint)ah; ad<<=8; ad|=al; return(ad); } void main() { uchar j; sum=0;sum1=0; sum_final=0; sum_final1=0; while(1) { for(j=0;j<128;j++) { sum1+=read(1); display(a1,b1,c1,d1); } sum=sum1/128; sum1=0; sum_final1=(sum/4095)*5; sum_final=sum_final1*1000; a1=(int)sum_final/1000; b1=(int)sum_final%1000/100; c1=(int)sum_final%1000%100/10; d1=(int)sum_final%10; display(a1,b1,c1,d1); } }
上传时间: 2013-11-19
上传用户:shen1230