虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

四排90度<b>弯针</b>

  • 德普达DBT-Q2009对MBI6024的支持

    其他控制模式: a、16bit/65536 级灰度模式,暂未开放10bit/1024 级灰度模式; b、每帧都会发送逐点校正数据和配置寄存器数据; c、配置寄存器1(CF1)使能奇偶校验,防止MBI6024 进入未知状态; d、配置寄存器2(CF2)设定“CKI 逾时时间”为“95~172 CKI 周期”;

    标签: DBT-Q 2009 6024 MBI

    上传时间: 2013-11-11

    上传用户:xingyuewubian

  • 基于核的MMKP问题算法研究

      多维多选择背包问题(MMKP)是0-1背包问题的延伸,背包核已经被用来设计解决背包问题的高效算法。目的是研究如何获得一种背包核,并以此高效处理多维多选择背包问题。首先给出了一种方法确定MMKP的核,然后阐述了利用核精确解决MMKP问题的B&B算法,列出了具体的算法步骤。在分析了算法的存储复杂度后,将算法在各种实例上的运行效果与目前解决MMKP问题的常用算法的运行效果进行了比较,发现本文的算法性能优于以往任何算法。

    标签: MMKP 算法研究

    上传时间: 2013-11-20

    上传用户:wangw7689

  • 信号完整性知识基础(pdf)

    现代的电子设计和芯片制造技术正在飞速发展,电子产品的复杂度、时钟和总线频率等等都呈快速上升趋势,但系统的电压却不断在减小,所有的这一切加上产品投放市场的时间要求给设计师带来了前所未有的巨大压力。要想保证产品的一次性成功就必须能预见设计中可能出现的各种问题,并及时给出合理的解决方案,对于高速的数字电路来说,最令人头大的莫过于如何确保瞬时跳变的数字信号通过较长的一段传输线,还能完整地被接收,并保证良好的电磁兼容性,这就是目前颇受关注的信号完整性(SI)问题。本章就是围绕信号完整性的问题,让大家对高速电路有个基本的认识,并介绍一些相关的基本概念。 第一章 高速数字电路概述.....................................................................................51.1 何为高速电路...............................................................................................51.2 高速带来的问题及设计流程剖析...............................................................61.3 相关的一些基本概念...................................................................................8第二章 传输线理论...............................................................................................122.1 分布式系统和集总电路.............................................................................122.2 传输线的RLCG 模型和电报方程...............................................................132.3 传输线的特征阻抗.....................................................................................142.3.1 特性阻抗的本质.................................................................................142.3.2 特征阻抗相关计算.............................................................................152.3.3 特性阻抗对信号完整性的影响.........................................................172.4 传输线电报方程及推导.............................................................................182.5 趋肤效应和集束效应.................................................................................232.6 信号的反射.................................................................................................252.6.1 反射机理和电报方程.........................................................................252.6.2 反射导致信号的失真问题.................................................................302.6.2.1 过冲和下冲.....................................................................................302.6.2.2 振荡:.............................................................................................312.6.3 反射的抑制和匹配.............................................................................342.6.3.1 串行匹配.........................................................................................352.6.3.1 并行匹配.........................................................................................362.6.3.3 差分线的匹配.................................................................................392.6.3.4 多负载的匹配.................................................................................41第三章 串扰的分析...............................................................................................423.1 串扰的基本概念.........................................................................................423.2 前向串扰和后向串扰.................................................................................433.3 后向串扰的反射.........................................................................................463.4 后向串扰的饱和.........................................................................................463.5 共模和差模电流对串扰的影响.................................................................483.6 连接器的串扰问题.....................................................................................513.7 串扰的具体计算.........................................................................................543.8 避免串扰的措施.........................................................................................57第四章 EMI 抑制....................................................................................................604.1 EMI/EMC 的基本概念..................................................................................604.2 EMI 的产生..................................................................................................614.2.1 电压瞬变.............................................................................................614.2.2 信号的回流.........................................................................................624.2.3 共模和差摸EMI ..................................................................................634.3 EMI 的控制..................................................................................................654.3.1 屏蔽.....................................................................................................654.3.1.1 电场屏蔽.........................................................................................654.3.1.2 磁场屏蔽.........................................................................................674.3.1.3 电磁场屏蔽.....................................................................................674.3.1.4 电磁屏蔽体和屏蔽效率.................................................................684.3.2 滤波.....................................................................................................714.3.2.1 去耦电容.........................................................................................714.3.2.3 磁性元件.........................................................................................734.3.3 接地.....................................................................................................744.4 PCB 设计中的EMI.......................................................................................754.4.1 传输线RLC 参数和EMI ........................................................................764.4.2 叠层设计抑制EMI ..............................................................................774.4.3 电容和接地过孔对回流的作用.........................................................784.4.4 布局和走线规则.................................................................................79第五章 电源完整性理论基础...............................................................................825.1 电源噪声的起因及危害.............................................................................825.2 电源阻抗设计.............................................................................................855.3 同步开关噪声分析.....................................................................................875.3.1 芯片内部开关噪声.............................................................................885.3.2 芯片外部开关噪声.............................................................................895.3.3 等效电感衡量SSN ..............................................................................905.4 旁路电容的特性和应用.............................................................................925.4.1 电容的频率特性.................................................................................935.4.3 电容的介质和封装影响.....................................................................955.4.3 电容并联特性及反谐振.....................................................................955.4.4 如何选择电容.....................................................................................975.4.5 电容的摆放及Layout ........................................................................99第六章 系统时序.................................................................................................1006.1 普通时序系统...........................................................................................1006.1.1 时序参数的确定...............................................................................1016.1.2 时序约束条件...................................................................................1066.2 源同步时序系统.......................................................................................1086.2.1 源同步系统的基本结构...................................................................1096.2.2 源同步时序要求...............................................................................110第七章 IBIS 模型................................................................................................1137.1 IBIS 模型的由来...................................................................................... 1137.2 IBIS 与SPICE 的比较.............................................................................. 1137.3 IBIS 模型的构成...................................................................................... 1157.4 建立IBIS 模型......................................................................................... 1187.4 使用IBIS 模型......................................................................................... 1197.5 IBIS 相关工具及链接..............................................................................120第八章 高速设计理论在实际中的运用.............................................................1228.1 叠层设计方案...........................................................................................1228.2 过孔对信号传输的影响...........................................................................1278.3 一般布局规则...........................................................................................1298.4 接地技术...................................................................................................1308.5 PCB 走线策略............................................................................................134

    标签: 信号完整性

    上传时间: 2013-11-01

    上传用户:xitai

  • 磁芯电感器的谐波失真分析

    磁芯电感器的谐波失真分析 摘  要:简述了改进铁氧体软磁材料比损耗系数和磁滞常数ηB,从而降低总谐波失真THD的历史过程,分析了诸多因数对谐波测量的影响,提出了磁心性能的调控方向。 关键词:比损耗系数, 磁滞常数ηB ,直流偏置特性DC-Bias,总谐波失真THD  Analysis on THD of the fer rite co res u se d i n i nductancShi Yan Nanjing Finemag Technology Co. Ltd., Nanjing 210033   Abstract:    Histrory of decreasing THD by improving the ratio loss coefficient and hysteresis constant of soft magnetic ferrite is briefly narrated. The effect of many factors which affect the harmonic wave testing is analysed. The way of improving the performance of ferrite cores is put forward.  Key words: ratio loss coefficient,hysteresis constant,DC-Bias,THD  近年来,变压器生产厂家和软磁铁氧体生产厂家,在电感器和变压器产品的总谐波失真指标控制上,进行了深入的探讨和广泛的合作,逐步弄清了一些似是而非的问题。从工艺技术上采取了不少有效措施,促进了质量问题的迅速解决。本文将就此热门话题作一些粗浅探讨。  一、 历史回顾 总谐波失真(Total harmonic distortion) ,简称THD,并不是什么新的概念,早在几十年前的载波通信技术中就已有严格要求<1>。1978年邮电部公布的标准YD/Z17-78“载波用铁氧体罐形磁心”中,规定了高μQ材料制作的无中心柱配对罐形磁心详细的测试电路和方法。如图一电路所示,利用LC组成的150KHz低通滤波器在高电平输入的情况下测量磁心产生的非线性失真。这种相对比较的实用方法,专用于无中心柱配对罐形磁心的谐波衰耗测试。 这种磁心主要用于载波电报、电话设备的遥测振荡器和线路放大器系统,其非线性失真有很严格的要求。  图中  ZD   —— QF867 型阻容式载频振荡器,输出阻抗 150Ω, Ld47 —— 47KHz 低通滤波器,阻抗 150Ω,阻带衰耗大于61dB,       Lg88 ——并联高低通滤波器,阻抗 150Ω,三次谐波衰耗大于61dB Ld88 ——并联高低通滤波器,阻抗 150Ω,三次谐波衰耗大于61dB FD   —— 30~50KHz 放大器, 阻抗 150Ω, 增益不小于 43 dB,三次谐波衰耗b3(0)≥91 dB, DP  —— Qp373 选频电平表,输入高阻抗, L ——被测无心罐形磁心及线圈, C  ——聚苯乙烯薄膜电容器CMO-100V-707APF±0.5%,二只。 测量时,所配用线圈应用丝包铜电磁线SQJ9×0.12(JB661-75)在直径为16.1mm的线架上绕制 120 匝, (线架为一格) , 其空心电感值为 318μH(误差1%) 被测磁心配对安装好后,先调节振荡器频率为 36.6~40KHz,  使输出电平值为+17.4 dB, 即选频表在 22′端子测得的主波电平 (P2)为+17.4 dB,然后在33′端子处测得输出的三次谐波电平(P3), 则三次谐波衰耗值为:b3(+2)= P2+S+ P3 式中:S 为放大器增益dB 从以往的资料引证, 就可以发现谐波失真的测量是一项很精细的工作,其中测量系统的高、低通滤波器,信号源和放大器本身的三次谐波衰耗控制很严,阻抗必须匹配,薄膜电容器的非线性也有相应要求。滤波器的电感全由不带任何磁介质的大空心线圈绕成,以保证本身的“洁净” ,不至于造成对磁心分选的误判。 为了满足多路通信整机的小型化和稳定性要求, 必须生产低损耗高稳定磁心。上世纪 70 年代初,1409 所和四机部、邮电部各厂,从工艺上改变了推板空气窑烧结,出窑后经真空罐冷却的落后方式,改用真空炉,并控制烧结、冷却气氛。技术上采用共沉淀法攻关试制出了μQ乘积 60 万和 100 万的低损耗高稳定材料,在此基础上,还实现了高μ7000~10000材料的突破,从而大大缩短了与国外企业的技术差异。当时正处于通信技术由FDM(频率划分调制)向PCM(脉冲编码调制) 转换时期, 日本人明石雅夫发表了μQ乘积125 万为 0.8×10 ,100KHz)的超优铁氧体材料<3>,其磁滞系数降为优铁

    标签: 磁芯 电感器 谐波失真

    上传时间: 2013-12-15

    上传用户:天空说我在

  • 变频器密码及解密方法

    一、台达变频器的超级密码 -B系列的 :57522 -H系列的:33582 S1系列变频的万能密码:575222、 二、欧瑞变频器(也就是之前的惠丰变频器)超级密码是: 18881500-G 1500-P 1000-G 200-G的都是通用的。 三、烁普变频高级菜单P301输入321A000输入11,刷新程序; P301输入321A000输入9,进菜单E001,输入机器G; PE002额定电压,E003额定电流,E004电压校正,E005不动,E006电流校正。 四、普传PI2000刷新设定方法:

    标签: 变频器 密码 解密

    上传时间: 2013-11-11

    上传用户:macarco

  • 文曲星里的小游戏

    文曲星里的小游戏,本人用C语言将其编出并添加破纪录功能。游戏规则:随机产生4个数字,由玩家输入4个不重复的数字(如:8 3 1 2)按回车后电脑给出提示,其形式为"?A?B".你所输入的四位数中,位置和数字都正确则为A,数字相同但位置不相同时为B,你只可以猜10次,若你所用的次数小于纪录保持者,则为破纪录。小作一篇,请多请教!

    标签: 文曲星 小游戏

    上传时间: 2014-01-20

    上传用户:invtnewer

  • 《数据库设计》课程设计 一、 设计目的 数据库设计是一门应用性很强的学科

    《数据库设计》课程设计 一、 设计目的 数据库设计是一门应用性很强的学科,在学习时必须使理论与实践相结合。课程设计的目的是通过实践使同学们经历到一次综合训练,以便能较全面地理解、掌握和综合运用所学的知识。 二、 设计任务与要求 (1) 对实际系统进行分析,写出需求分析说明(数据需求和事务需求)。 (2) 概念结构设计 说明本数据库将反映的现实世界中的实体、属性和它们之间的关系等(E-R图,可以用基本E-R图或扩展E-R图)。 (3) 逻辑结构设计 将概念结构映射为数据库全局逻辑结构(关系模型),包括所确定的关键字和属性、重新确定的记录结构和所建立的各个表文件之间的相互关系。 三、 设计环境与工具 要求使用辅助设计工具,如Power Designer或者ERWin等,转换为:SQL Server、Access或其它的DBMS数据库(不作统一要求)。 四、 设计步骤 参考《数据库设计实例指导书》 五、 设计题 教材P58面:3.8课程设计A、B、C任选一题 六、 设计成果 设计结果以书面形式于17周交付。 七、 成绩评定 (1) 独立完成 (2) 文档完整 (3) 满足用户需求 这是研究生数据库课程设计

    标签: 数据库设计

    上传时间: 2015-03-03

    上传用户:498732662

  • 猜数字小游戏。游戏规则:随机产生4个数字

    猜数字小游戏。游戏规则:随机产生4个数字,由玩家输入4个不重复的数字(如:8 3 1 2)按回车后电脑给出提示,其形式为"?A?B".你所输入的四位数中,位置和数字都正确则为A,数字相同但位置不相同时为B,你只可以猜10次,若你所用的次数小于纪录保持者,则为破纪录。

    标签: 数字 小游戏 随机

    上传时间: 2013-12-29

    上传用户:yiwen213

  • 本ppt介绍了多层C/S型数据库应用

    本ppt介绍了多层C/S型数据库应用,多层数据库应用的结构,典型的三层C/S结构,B/S型数据库应用,典型的B/S结构(三层),结合三层C/S的B/S结构(四层),使用多层分布式应用结构的优势,高可靠性的多层分布式结构等方面的内容

    标签: 多层 数据库

    上传时间: 2015-03-15

    上传用户:songnanhua

  • 1. 汽车轮渡口

    1. 汽车轮渡口,过江渡船每次能载10辆车过江,过江车辆分为客车类和货车类,上渡船有如下规定:同类车先到先上船,客车先于货车上渡船,且每上4辆客车,才允许上一辆货车。若等待客车不足4辆,则从货车代替,若无货车等待允许客车上船。试写一个算法模拟渡口管理。 算法设计: 1客车和货车均建立一个链式队列,初始均为空。以后来一辆车不是货车就是客车,因此可以说整个程序的事件驱动event就是这两个,客车表示1,货车表示0. 2轮船还没有到达时客车和货车均按次序排在各自队列中。 3轮船到达时,根据两个队列的情况,分别处理。处理如下: a 客车数不满4辆,则将排在前面的货车上船,但总数不能超过10,若没有货车等待,客车直接上船。 b 客车数满4,但不满8辆,客车先上,排在前面的只有一辆货车可以上船,若没有货车等待则货车不上。 c 客车满8辆但不满10,客车上船,排在前面的货车最多可以上2辆,但总数不能超过10。 d 客车满10,则全上客车,但总数不能超过10。

    标签: 汽车

    上传时间: 2015-04-25

    上传用户:CHENKAI