为适应组合导航计算机系统的微型化、高性能度的要求,拓宽导航计算机的应用领域,本文设计出一种基于浮点型DSP(TMS320C6713)和可编程逻辑阵列器件(FPGA: EP1C12N240C8)协同合作的导航计算机系统。 论文在阐述了组合导航计算机的特点和应用要求后,提出基于DSP和FPGA的组合导航计算机系统方案。该方案以DSP为导航解算处理器,由FPGA完成IMU信号的采集和缓存以及系统控制信号的整合;DSP通过EMIF接口实现和FPGA通信。在此基础上研究了各扩展通信接口、系统硬件原理图和PCB的开发,且在FPGA中使用调用IP核来实现FIR低通滤波数据处理机抖激光陀螺的机抖振动的影响。其次,详细阐述了利用TI公司的DSP集成开发环境和DSP/BIOS准实时操作系统开发多任务系统软件的具体方案。本文引入DSP/BIOS实时操作系统提供的多任务机制,将采集处理按照功能划分四个相对独立的任务,这些任务在DSP/BIOS的调度下,按照用户指定的优先级运行,大大提高系统的工作效率。最后给了DSP芯片Bootloader的制作方法。 导航计算机系统研制开发是软、硬件研究紧密结合的过程。在微型导航计算机系统方案建立的基础上,本文首先讨论了系统硬件整体设计和软件开发流程;其次针对导航计算机系统各个功能模块以及多项关键技术进行了设计与开发工作,涉及系统数据通信模块、模拟信号采集模块和数据存储模块;最后,对导航计算机系统进行了联合调试工作,并对各个模块进行了详细的功能测试与验证,完成了微型导航计算机系统的制作。 以DSP/FPGA作为导航计算机硬件平台的捷联式惯性导航实时数据系统能够满足系统所要求的高精度、实时性、稳定性要求,适应了其高性能、低成本、低功耗的发展方向。
上传时间: 2013-04-24
上传用户:lishuoshi1996
波前处理机是自适应光学系统中实时信号处理和运算的核心,随着自适应光学系统得发展,波前传感器的采样频率越来越高,这就要求波前处理机必须有更强的数据处理能力以保证系统的实时性。在整个波前处理机的工作流程中,对CCD传来的实时图像数据进行实时处理是第一步,也是十分重要的一步。如果不能保证图像处理的实时性,那么后续的处理过程都无从谈起。因此,研制高性能的图像处理平台,对波前处理机性能的提高具有十分重要的意义。 论文介绍了本研究课题的背景以及国内外图像处理技术的应用和发展状况,接着介绍了传统的专用和通用图像处理系统的结构、特点和模型,并通过分析DSP芯片以及DSP系统的特点,提出了基于DSP和FPGA芯片的实时图像处理系统。该系统不同于传统基于PC机模式的图像处理系统,发挥了DSP和FPGA两者的优势,能更好地提高图像处理系统实时性能,同时也最大可能地降低成本。 论文根据图像处理系统的设计目的、应用需求确定了器件的选型。介绍了主要的器件,接着从系统架构、逻辑结构、硬件各功能模块组成等方面详细介绍了DSP+FPGA图像处理系统硬件设计,并分析了包括各种参数指标选择、连接方式在内的具体设计方法以及应该注意的问题。 论文在阐述传输线理论的基础上,在制作PCB电路板的过程中,针对高速电路设计中易出现的问题,详细分析了高速PCB设计中的信号完整性问题,包括反射、串扰等,说明了高速PCB的信号完整性、电源完整性和电磁兼容性问题及其解决方法,进行了一定的理论和技术探讨和研究。 论文还介绍了基于FPGA的逻辑设计,包括了图像采集模块的工作原理、设计方案和SDRAM控制器的设计,介绍了SDRAM的基本操作和工作时序,重点阐述系统中可编程器件内部模块化SDRAM控制器的设计及仿真结果。 论文最后描述了硬件系统的测试及调试流程,并给出了部分的调试结果。 该系统主要优点有:实时性、高速性。硬件设计的执行速度,在高速DSP和FPGA中实现信号处理算法程序,保证了系统实时性的实现;性价比高。自行研究设计的电路及硬件系统比较好的解决了高速实时图像处理的需求。
上传时间: 2013-05-30
上传用户:fxf126@126.com
可配置端口电路是FPGA芯片与外围电路连接关键的枢纽,它有诸多功能:芯片与芯片在数据上的传递(包括对输入信号的采集和输出信号输出),电压之间的转换,对外围芯片的驱动,完成对芯片的测试功能以及对芯片电路保护等。 本文采用了自顶向下和自下向上的设计方法,依据可配置端口电路能实现的功能和工作原理,运用Cadence的设计软件,结合华润上华0.5μm的工艺库,设计了一款性能、时序、功耗在整体上不亚于xilinx4006e[8]的端口电路。主要研究以下几个方面的内容: 1.基于端口电路信号寄存器的采集和输出方式,本论文设计的端口电路可以通过配置将它设置成单沿或者双沿的触发方式[7],并完成了Verilog XL和Hspiee的功能和时序仿真,且建立时间小于5ns和保持时间在0ns左右。和xilinx4006e[8]相比较满足设计的要求。 2.基于TAP Controller的工作原理及它对16种状态机转换的控制,对16种状态机的转换完成了行为级描述和实现了捕获、移位、输出、更新等主要功能仿真。 3.基于边界扫描电路是对触发器级联的构架这一特点,设计了一款边界扫描电路,并运用Verilog XL和Hspiee对它进行了功能和时序的仿真。达到对芯片电路测试设计的要求。 4.对于端口电路来讲,有时需要将从CLB中的输出数据实现异或、同或、与以及或的功能,为此本文采用二次函数输出的电路结构来实现以上的功能,并运用Verilog XL和Hspiee对它进行了功能和时序的仿真。满足设计要求。 5.对于0.5μm的工艺而言,输入端口的电压通常是3.3V和5V,为此根据设置不同的上、下MOS管尺寸来调整电路的中点电压,将端口电路设计成3.3V和5V兼容的电路,通过仿真性能上已完全达到这一要求。此外,在输入端口处加上扩散电阻R和电容C组成噪声滤波电路,这个电路能有效地抑制加到输入端上的白噪声型噪声电压[2]。 6.在噪声和延时不影响电路正常工作的范围内,具有三态控制和驱动大负载的功能。通过对管子尺寸的大小设置和驱动大小的仿真表明:在实现TTL高电平输出时,最大的驱动电流达到170mA,而对应的xilinx4006e的TTL高电平最大驱动电流为140mA[8];同样,在实现CMOS高电平最大驱动电流达到200mA,而xilinx4006e的CMOS驱动电流达到170[8]mA。 7.与xilinx4006e端口电路相比,在延时和面积以及功耗略大的情况下,本论文研究设计的端口电路增加了双沿触发、将输出数据实现二次函数的输出方式、通过添加译码器将配置端口的数目减少的新的功能,且驱动能力更加强大。
上传时间: 2013-07-20
上传用户:顶得柱
H.264/AVC是由国际电信联合会的视频专家组和国际标准化组织的运动图像专家组组成的联合视频小组制定的下一代视频压缩标准。新标准采用了一些先进算法,因此具有优异的压缩性能和极好的网络亲和性,满足低码率情况下的高质量视频的传输。 H.264/AVC采用的先进算法包括多模式帧间预测、1/4像素精度预测、整数变换量化、去方块滤波和熵编码。本论文着重对整数变换与量化、去方块滤波做了研究。整数变换是一种只有加法和移位的运算,量化可以通过查表和乘法操作就可以完成,避免了反变换的时候失配问题,没有精度损失;去方块滤波是一种用来去除低码率情况下的每个宏块的块效应,提高了解码图像的外观。 本文主要从算法研究和硬件实现两方面着手,在算法研究方面设计了一个可视化测试软件,在硬件实现方面主要对整数变换、量化和去方块滤波做了研究和实现。视频压缩技术的关键在于视频压缩算法及其芯片的实现,FPGA可重复使用,设计修改灵活,片内资源丰富,具备DSP模块等优势。在本论文的目标实现部分模块FPGA的硬件设计,用Verilog完成了关键部分的设计。首先简要介绍了视频压缩基本原理,常用视频压缩标准及其特性以及国内外的研究动态,并对H.264标准基本档次所涉及的核心技术进行了详细介绍,两种分层结构分别讨论。其次在掌握了H.264.算法及编解码流程的基础上,设计了基于H.264编解码的可视化软件平台。然后详细介绍了整数变换、量化、反变换和反量化核心模块的设计和实现,并在Altera的软件和开发板上进行了仿真验证;对去方块滤波算法做了软件研究测试,并给出了一种改进的硬件整体结构设计。最后,对全文工作进行了总结和对未来研究工作做了展望。我在课题中所做的主要工作有: 1.查阅相关文献,熟悉H.264.标准及整数变换、量化和去方块滤波等算法。 2.用VC++完成了基于H.264编解码的可视化软件平台设计。 3.用Verilog完成了整数变换量化、反变换反量化模块FPGA设计与验证。 4.去方块滤波器的算法研究、仿真和硬件整体结构设计。
上传时间: 2013-04-24
上传用户:lanjisu111
本文提出一种基于PC104嵌入式工业控制计算机与现场可编程门阵列(FPGA)的PCB测试机的硬件控制系统设计方案。方案中设计高效高压控制电路,实现测试电压与测试电流的精确数字控制。选用双高压电子开关形式代替高压模拟电子开关,大幅度提高测试电压。采用多电源方式在低控制电压下实现对高压电子开关的控制。设计高速信号处理电路对测试信号进行处理,从硬件上提高系统测试速度。 本设计中选用Altera公司的现场可编程器(FPGA)EP1K50,利用EDA设计工具Synplify、Modelsim、QuartusⅡ以及Verilog硬件描述语言完成了控制系统的硬件设计及调试,解决了由常规电路难以实现的问题。
上传时间: 2013-06-04
上传用户:lizhen9880
视频监控系统是一个集计算机的交互性、多媒体信息的综合性、通信的分布性和监控的实时性等技术于一体的综合系统。随着网络带宽,计算机处理能力和存储容量的快速提高,以及各种实用视频处理技术的出现,视频监控进入了全数字化的网络时代。视频监控系统的核心功能主要包括两大部分,一是视频图像采集和压缩处理,一是图像数据的传输。系统的主要硬件模块分为监控终端和监控控制终端两个部分。 本文设计并实现了一种基于ARM和嵌入式Linux的视频监控系统,该系统主要实现了视频图像的采集压缩和图像数据流基于RTP协议的传输。本系统的核心硬件平台采用韩国SamSung公司的S3C2410微处理器,ARM端作为视频监控终端,PC机作为监控控制终端。ARM端主要承载了图像采集、编码和对图像数据进行RTP打包并传输的功能,PC端主要承载的功能是图像数据的接收、显示和对监控终端的控制、访问。 在视频图像采集和压缩处理部分,利用Video for Linux提供的接口函数,实现了利用摄像头采集图像的过程,并设计实现了V4L视频采集及压缩模块,设计了系统JEPG图像采集和压缩模块和MPEG-4图像采集和压缩模块的具体编程流程和实现过程,并实现了基于这两种编码方式的视频压缩。用Visual C++实现了用户控制终端,可对应JPEG和MPEG-4两种编码方式进行解码并显示。 在图像数据的传输部分,系统采用了RTP协议作为视频数据流传输协议,并实现了视频数据在局域网内的实时性传输。移植了现在比较常用的JRTPLIB源码库,为RTP的实现提供了可调用的库函数,按照MPEG-4数据流的RTP封装格式和流程,设计实现了RTP编程。 最后对系统的功能和性能进行了测试。测试结果显示MPEG-4在保证与JPEG相当的图像质量时,大大减少了传输的数据量。同时,使用RTP协议进行传输,保证了系统的实时性,也保证了图像的传输质量。
上传时间: 2013-07-12
上传用户:wzr0701
论文根据系统具体控制对象将多电机独立驱动电动车的操稳性控制划分为间接稳定性控制与直接稳定性控制两大类,前者以优化车轮和路面的相对运动为目标;而后者直接以整车运动状态参量为调节对象.针对双电机前轮驱动EV,提出了基于自由轮转速信息的驱动防滑控制.分析了汽车转向过程的差速动力学原理,在Ackermann-Jeantand转向侧几何模型下讨论了理想差速过程中车轮驱/制动转矩变化应满足的条件.根据上述分析提出了一种双模式转矩分配电子差速器设计思路.分析了直接横摆力偶矩的产生与简化的转矩分配方法.基于零侧偏理想模型设计了双电机EV的前馈直接横摆力偶矩控制器并进行数值仿真,结果显示该方法能一定程度改善操稳性,但控制效果受系统非线性影响较大.提出应用隐模型跟踪最优控制理论的DYC控制策略,设计了控制器并进行仿真计算,证明此控制方法能在降低质心侧偏的同时保证横摆角速度响应的稳定、平滑、快速,并能适应不同路面情况.通过仿真讨论前驱动或后驱动布局与DYC控制效果的关系以及系统对汽车质心参数变化的适应性.设计并改装了双电机前轮独立驱动试验车.初步试车中该车转向与加速皆运行良好,以此为基础未来可进行控制策略实车测试.
上传时间: 2013-04-24
上传用户:LSPSL
飞机飞行的高度、马赫数和升降速度等参数是飞机的自动控制、导航、火控、空中管制、和告警等系统必不可少的信息。随着飞机性能的不断增强,飞机上各系统对飞行参数测试的要求也越来越高,旧有的测试系统已逐渐不能适应现代高速飞机飞行参数的测试需求,本文针对项目委托方提出的技术要求,经过对飞行参数测试技术及其发展趋势的研究分析,最终确定采用嵌入式技术,设计一款基于32位微处理器ARM的集数据采集、处理、显示为一体的测试飞机飞行高度、马赫数和升降速度的系统。 基于课题的研究内容,本文在分析研究飞机飞行参数测试原理的基础上,围绕着设计目标,从整体方案的选择、系统各部分元件的选取及测试系统的软硬件设计等方面阐述了主要开展的设计研究工作。重点对系统硬件电路设计、软件设计和气压传感器的温度补偿方法进行了深入论述。 应当指出,本文介绍的大气数据参数测试专用机,选用小型化高采样速率的硅压阻式气压传感器、高性能的32位ARM微处理器、高精度A/D转换器、专用接口芯片等优化组合,集成度高,体积小,重量轻。实验结果表明了所设计的系统方案合理有效,具有较好的实时性和可靠性,基本上满足了系统的设计需要。
上传时间: 2013-06-23
上传用户:kr770906
随着国有银行向商业银行的转变,银行的设备采购标准会越来越高,与此同时,银行柜台业务量的增加,使得老一代的银行专用打印机无论在速度上还是在使用的方便性上都显得力不从心,为了占领市场,公司有必要开发新型的、使用更加方便的打印机。 老一代打印机在打印存折时,柜台工作人员要把存折放准位置,要不然打印会偏离预定位置,在打印信函时,有的冷僻字无法打印出来,软件无法下载升级。为了加快柜台处理速度,减小柜台工作人员的工作量,需要开发能自动纠偏定位,字符完善的打印机。 本文在分析需求的基础上,比较当前流行的处理器,选用Atmel公司的ARM芯片AT91M42800A作为处理核心,使用Xilin公司的20万门的FPGA XC2S200做硬件逻辑控制,通过光电传感器和相关的控制电路来实现自动纠偏定位。在嵌入式操作系统上选用Nucleus Plus,约95%的Nucleus Plus代码用C语言编写,因此它能很方便移植,同时它还提供全部源代码,这样便于开发。另外,它还只要一次性付费,这使得它有很好的成本优势。 文中详细说明了本系统的硬件、固件的实现。在硬件上阐述了一些单元电路,包括存储器电路,接口电路,传感器电路等的设计思路和实现方法。通过光电传感电路,步进电机控制和软件结合,形成闭环控制,从而实现了快速自动纠偏定位;通过大屏幕的LCD显示实现了操作界面的简单化;采用大容量的存储器以及大字库解决了冷僻字无法打印的问题;固件部分详细阐述了系统上电启动过程,包括Bootstrap模块和loader模块,Bootstrap模块主要功能是重定位存储器,初始化基本硬件以及Loader模块的自动在线下载升级。Loader模块的主要功能是下载FPGA的配置代码,初始化键盘和显示器,然后调用Nucleus Plus初始化代码,从而建立和调用任务。 本文通过总结测试结果,与老一代打印机相比,新打印机在智能化上实现了自动纠偏定位,使得打印机操作人员不需要准确放置存折,就能正确打印,提高了工作效率;在打印速度上比原系统提高30%,还可方便地实现软件升级。 当然,新的打印机在存折偏移很大时,要耗费长时间才能把存折推到正确位置。这要在纠偏算法上做进一步的改进。
上传时间: 2013-04-24
上传用户:feichengweoayauya
MPEG-4是目前非常流行的视频压缩标准,基于MPEG-4的视频处理系统有两种体系结构:可编程结构和专用结构.可编程结构灵活,适用范围广,易于升级,但电路复杂,电路功耗大.专用视频编解码器结构硬件开销小,处理速度高.该文主要研究专用的MPEG-4视频编解码芯片设计方法.目前市场上MPEG-4视频编解码芯片主要是Simple Profile级别的,而我们设计的芯片要实现Advanced Simple Profile级别.该文采用了一种基于大规模FPGA的软硬件相结的芯片设计方案,我们设计了基于FPGA的MPEG-4芯片设计开发平台,完成算法的硬件仿真与测试.论文围绕基于FPGA的MPEG-4芯片开发系统设计,分为两个部分.第一部分介绍了目前国内外实现MPEG-4视频处理系统的主要方法和应用,概述了国际上MPEG-4视频编解码芯片设计的一般方法及其发展趋势,详细描述了我们的基于FPGA的MPEG-4编解码芯片开发系统的结构.第二部分重点讲述了基于FPGA的MPEG-4芯片开发系统各个电路模块的设计,包括电源模块、FPGA配置模块、时钟生成模块、视频输入/输出模块、RS232串口模块、以太网接口模块、USB接口模块等.同时也介绍了I
上传时间: 2013-06-15
上传用户:it男一枚