文章阐述了新型单片机89C2051构成的多功能测控系统及其框图,描述了由89C2051单片机构成的键盘扫描、显示、小信号测量、模数转换、输出控制电路、报警电路及软硬件结构,并简要介绍了主要元器件性能。
上传时间: 2013-10-28
上传用户:xuanchangri
设计了一种基于C8051F005 单片机控制多路PZT(压电陶瓷)的驱动电路,采用串行数据传输的方法,利用新型数模转换器AD5308 具有8 通道DAC 输出的特性,极大的简化了电路设计,给出了硬件系统设计和软件流程图以及主要的软件模块设计。本电路主要用于自适应光学合成孔径成像相位实时校正系统中。结果表明,该电路可以成功为12 路PZT 提供所需的驱动电压。
上传时间: 2013-10-19
上传用户:pans0ul
针对人行径方向测量的红外探测系统需求,提出了实现多通道模数转换器(ADC)的一种新方法,采用了双片可独立工作的带有8 通道ADC 的单片机,基于双片单片机之间的SMBus 通讯可实现16 通道ADC 系统,从而可简化后端处理电路,提高系统的数据处理能力,并取得较好的数据采集的同步性。
上传时间: 2013-10-09
上传用户:jiiszha
介绍了以单片机SST89E554RC 为控制器的点阵中文显示控制屏的设计。详细介绍了系统硬件的结构与软件的控制,以及如何通过PC 机将要显示的汉字汉模提取出来并发送给单片机,然后显示在点阵控制屏上的过程,并对模块中采用USB 接口的原理进行说明。
上传时间: 2013-11-02
上传用户:lty6899826
PHILIPS 的P89LPC900 系列FLASH 单片机部分型号提供了8 位精度的AD 转换器,为许多控制系统带来方便,诸如温度控制、运动控制等,在MCU 发出控制指令后,常常需要将执行机构的情况反馈给MCU,从而构成一个闭环系统,达到精细控制的目的。这一检测过程一般由各种传感器完成,在某些对成本有高要求的场合,为了控制成本,也常使用一些简单的分立元件替代数字传感器,通常送到MCU 接口的都是一些经过处理的电压信号,内带ADC 的芯片能够简化设计,并使成本进一步降低。一般来说,8 位的AD 精度已经足以应对,但是在一些对精度要求比较高的场合,可能会需要10 位或者更高精度,细心的用户通过仔细研究P89LPC900 单片机的特点,发现P89LPC900 系列单片机ADC 的特点非常适合进行ADC 过采样,本文正是结合P89LPC900 的特点,介绍该单片机在高精度模数转换场合的应用,以及使用过采样技术需要满足的条件和需注意事项。使这种低成本高精度的AD技术得以应用。
上传时间: 2013-10-11
上传用户:gokk
8051系列单片机应用系统的PROTEUS仿真设计:介绍PROTEUS软件的基础上,以电扶梯单片机控制系统为实例来介绍如何采用PROTEUS软件进行8051单片机应用系统仿真设计。关键词:8051单片机 应用系统 PROTEUS软件 keil c软件 绑定 仿真单片机在电子产品中的应用已经越来越广泛,由于市场竞争日趋激烈,要求新产品的开发周期越来越短。因此应运而生了单片机仿真技术。PROTEUS软件是英国Labcenter electronics公司研发的EDA工具软件。它是一个集模拟电路、数字电路、模/数混合电路以及多种微控制器系统为一体的系统设计和仿真平台。是目前同类软件中最先进、最完整的电子类仿真平台之一。它真正实现了在计算机上完成从原理图、电路分析与仿真、单片机代码调试与仿真、系统测试与功能验证到PCB板生成的完整的电子产品研发过程。1. PROTEUS软件简介PROTEUS从1989年问世至今,经过了近20年的使用、完善,功能越来越强、性能越来越好。运行PROTEUS软件,计算机系统需具有:200MHz或更高的奔腾处理器,Win98/Me/2000/XP或更高版本的操作系统,64MB或以上的可用硬盘空间,64MB或以上的RAM空间,用PROTEUS VSM仿真时,则要求300MHz以上的奔腾处理器,如果专门使用PROTEUS VSM作实时仿真较大或较复杂的电路系统,则建议采用更高配置的计算机系统,以便获得更好的仿真效果[1]。已经安装了Proteus ISIS7软件的桌面上就会有图标 。双击该图标,出现工作界面如图1所示。界面中包括:标题栏、下拉主菜单、快捷按钮栏、标准工具栏、绘图工具箱、状态栏、选择元器件按钮、预览对象方位控制按钮、仿真操作按钮、预览窗口、电路原理图编辑窗口等。
上传时间: 2013-11-05
上传用户:003030
MSP430系列flash型超低功耗16位单片机MSP430系列单片机在超低功耗和功能集成等方面有明显的特点。该系列单片机自问世以来,颇受用户关注。在2000年该系列单片机又出现了几个FLASH型的成员,它们除了仍然具备适合应用在自动信号采集系统、电池供电便携式装置、超长时间连续工作的设备等领域的特点外,更具有开发方便、可以现场编程等优点。这些技术特点正是应用工程师特别感兴趣的。《MSP430系列FLASH型超低功耗16位单片机》对该系列单片机的FLASH型成员的原理、结构、内部各功能模块及开发方法与工具作详细介绍。MSP430系列FLASH型超低功耗16位单片机 目录 第1章 引 论1.1 MSP430系列单片机1.2 MSP430F11x系列1.3 MSP430F11x1系列1.4 MSP430F13x系列1.5 MSP430F14x系列第2章 结构概述2.1 引 言2.2 CPU2.3 程序存储器2.4 数据存储器2.5 运行控制2.6 外围模块2.7 振荡器与时钟发生器第3章 系统复位、中断及工作模式3.1 系统复位和初始化3.1.1 引 言3.1.2 系统复位后的设备初始化3.2 中断系统结构3.3 MSP430 中断优先级3.3.1 中断操作--复位/NMI3.3.2 中断操作--振荡器失效控制3.4 中断处理 3.4.1 SFR中的中断控制位3.4.2 中断向量地址3.4.3 外部中断3.5 工作模式3.5.1 低功耗模式0、1(LPM0和LPM1)3.5.2 低功耗模式2、3(LPM2和LPM3)3.5.3 低功耗模式4(LPM4)22 3.6 低功耗应用的要点23第4章 存储空间4.1 引 言4.2 存储器中的数据4.3 片内ROM组织4.3.1 ROM 表的处理4.3.2 计算分支跳转和子程序调用4.4 RAM 和外围模块组织4.4.1 RAM4.4.2 外围模块--地址定位4.4.3 外围模块--SFR4.5 FLASH存储器4.5.1 FLASH存储器的组织4.5.2 FALSH存储器的数据结构4.5.3 FLASH存储器的控制寄存器4.5.4 FLASH存储器的安全键值与中断4.5.5 经JTAG接口访问FLASH存储器39第5章 16位CPU5.1 CPU寄存器5.1.1 程序计数器PC5.1.2 系统堆栈指针SP5.1.3 状态寄存器SR5.1.4 常数发生寄存器CG1和CG25.2 寻址模式5.2.1 寄存器模式5.2.2 变址模式5.2.3 符号模式5.2.4 绝对模式5.2.5 间接模式5.2.6 间接增量模式5.2.7 立即模式5.2.8 指令的时钟周期与长度5.3 指令组概述5.3.1 双操作数指令5.3.2 单操作数指令5.3.3 条件跳转5.3.4 模拟指令的简短格式5.3.5 其他指令第6章 硬件乘法器6.1 硬件乘法器6.2 硬件乘法器操作6.2.1 无符号数相乘(16位×16位、16位×8位、8位×16位、8位×8位)6.2.2 有符号数相乘(16位×16位、16位×8位、8位×16位、8位×8位)6.2.3 无符号数乘加(16位×16位、16位×8位、8位×16位、8位×8位)6.2.4 有符号数乘加(16位×16位、16位×8位、8位×16位、8位×8位)6.3 硬件乘法器寄存器6.4 硬件乘法器的软件限制6.4.1 寻址模式6.4.2 中断程序6.4.3 MACS第7章 基础时钟模块7.1 基础时钟模块7.2 LFXT1与XT27.2.1 LFXT1振荡器7.2.2 XT2振荡器7.2.3 振荡器失效检测7.2.4 XT振荡器失效时的DCO7.3 DCO振荡器7.3.1 DCO振荡器的特性7.3.2 DCO调整器7.4 时钟与运行模式7.4.1 由PUC启动7.4.2 基础时钟调整7.4.3 用于低功耗的基础时钟特性7.4.4 选择晶振产生MCLK7.4.5 时钟信号的同步7.5 基础时钟模块控制寄存器7.5.1 DCO时钟频率控制7.5.2 振荡器与时钟控制寄存器7.5.3 SFR控制位第8章 输入输出端口8.1 引 言8.2 端口P1、P28.2.1 P1、P2的控制寄存器8.2.2 P1、P2的原理8.2.3 P1、P2的中断控制功能8.3 端口P3、P4、P5和P68.3.1 端口P3、P4、P5和P6的控制寄存器8.3.2 端口P3、P4、P5和P6的端口逻辑第9章 看门狗定时器WDT9.1 看门狗定时器9.2 WDT寄存器9.3 WDT中断控制功能9.4 WDT操作第10章 16位定时器Timer_A10.1 引 言10.2 Timer_A的操作10.2.1 定时器模式控制10.2.2 时钟源选择和分频10.2.3 定时器启动10.3 定时器模式10.3.1 停止模式10.3.2 增计数模式10.3.3 连续模式10.3.4 增/减计数模式10.4 捕获/比较模块10.4.1 捕获模式10.4.2 比较模式10.5 输出单元10.5.1 输出模式10.5.2 输出控制模块10.5.3 输出举例10.6 Timer_A的寄存器10.6.1 Timer_A控制寄存器TACTL10.6.2 Timer_A寄存器TAR10.6.3 捕获/比较控制寄存器CCTLx10.6.4 Timer_A中断向量寄存器10.7 Timer_A的UART应用 第11章 16位定时器Timer_B11.1 引 言11.2 Timer_B的操作11.2.1 定时器长度11.2.2 定时器模式控制11.2.3 时钟源选择和分频11.2.4 定时器启动11.3 定时器模式11.3.1 停止模式11.3.2 增计数模式11.3.3 连续模式11.3.4 增/减计数模式11.4 捕获/比较模块11.4.1 捕获模式11.4.2 比较模式11.5 输出单元11.5.1 输出模式11.5.2 输出控制模块11.5.3 输出举例11.6 Timer_B的寄存器11.6.1 Timer_B控制寄存器TBCTL11.6.2 Timer_B寄存器TBR11.6.3 捕获/比较控制寄存器CCTLx11.6.4 Timer_B中断向量寄存器第12章 USART通信模块的UART功能12.1 异步模式12.1.1 异步帧格式12.1.2 异步通信的波特率发生器12.1.3 异步通信格式12.1.4 线路空闲多机模式12.1.5 地址位多机通信格式12.2 中断和中断允许12.2.1 USART接收允许12.2.2 USART发送允许12.2.3 USART接收中断操作12.2.4 USART发送中断操作12.3 控制和状态寄存器12.3.1 USART控制寄存器UCTL12.3.2 发送控制寄存器UTCTL12.3.3 接收控制寄存器URCTL12.3.4 波特率选择和调整控制寄存器12.3.5 USART接收数据缓存URXBUF12.3.6 USART发送数据缓存UTXBUF12.4 UART模式,低功耗模式应用特性12.4.1 由UART帧启动接收操作12.4.2 时钟频率的充分利用与UART的波特率12.4.3 多处理机模式对节约MSP430资源的支持12.5 波特率计算 第13章 USART通信模块的SPI功能13.1 USART同步操作13.1.1 SPI模式中的主模式13.1.2 SPI模式中的从模式13.2 中断与控制功能 13.2.1 USART接收/发送允许位及接收操作13.2.2 USART接收/发送允许位及发送操作13.2.3 USART接收中断操作13.2.4 USART发送中断操作13.3 控制与状态寄存器13.3.1 USART控制寄存器13.3.2 发送控制寄存器UTCTL13.3.3 接收控制寄存器URCTL13.3.4 波特率选择和调制控制寄存器13.3.5 USART接收数据缓存URXBUF13.3.6 USART发送数据缓存UTXBUF第14章 比较器Comparator_A14.1 概 述14.2 比较器A原理14.2.1 输入模拟开关14.2.2 输入多路切换14.2.3 比较器14.2.4 输出滤波器14.2.5 参考电平发生器14.2.6 比较器A中断电路14.3 比较器A控制寄存器14.3.1 控制寄存器CACTL114.3.2 控制寄存器CACTL214.3.3 端口禁止寄存器CAPD14.4 比较器A应用14.4.1 模拟信号在数字端口的输入14.4.2 比较器A测量电阻元件14.4.3 两个独立电阻元件的测量系统14.4.4 比较器A检测电流或电压14.4.5 比较器A测量电流或电压14.4.6 测量比较器A的偏压14.4.7 比较器A的偏压补偿14.4.8 增加比较器A的回差第15章 模数转换器ADC1215.1 概 述15.2 ADC12的工作原理及操作15.2.1 ADC内核15.2.2 参考电平15.3 模拟输入与多路切换15.3.1 模拟多路切换15.3.2 输入信号15.3.3 热敏二极管的使用15.4 转换存储15.5 转换模式15.5.1 单通道单次转换模式15.5.2 序列通道单次转换模式15.5.3 单通道重复转换模式15.5.4 序列通道重复转换模式15.5.5 转换模式之间的切换15.5.6 低功耗15.6 转换时钟与转换速度15.7 采 样15.7.1 采样操作15.7.2 采样信号输入选择15.7.3 采样模式15.7.4 MSC位的使用15.7.5 采样时序15.8 ADC12控制寄存器15.8.1 控制寄存器ADC12CTL0和ADC12CTL115.8.2 转换存储寄存器ADC12MEMx15.8.3 控制寄存器ADC12MCTLx15.8.4 中断标志寄存器ADC12IFG.x和中断允许寄存器ADC12IEN.x15.8.5 中断向量寄存器ADC12IV15.9 ADC12接地与降噪第16章 FLASH型芯片的开发16.1 开发系统概述16.1.1 开发技术16.1.2 MSP430系列的开发16.1.3 MSP430F系列的开发16.2 FLASH型的FET开发方法16.2.1 MSP430芯片的JTAG接口16.2.2 FLASH型仿真工具16.3 FLASH型的BOOT ROM16.3.1 标准复位过程和进入BSL过程16.3.2 BSL的UART协议16.3.3 数据格式16.3.4 退出BSL16.3.5 保护口令16.3.6 BSL的内部设置和资源附录A 寻址空间附录B 指令说明B.1 指令汇总B.2 指令格式B.3 不增加ROM开销的模拟指令B.4 指令说明(字母顺序)B.5 用几条指令模拟的宏指令附录C MSP430系列单片机参数表附录D MSP430系列单片机封装形式附录E MSP430系列器件命名
上传时间: 2014-04-28
上传用户:sssnaxie
一种实用的单片机双CPU设计方案及其应用:针对传统仪表具有的硬件资源不足、速度慢等功能缺陷,提出了一种基于单片机的CPU设计方案,即扩展CPU,直接从主CPU对应的数据显示I/O口上获取数据,这种获取数据的双CPU设计方案中主从CPU之间在功能上相互独立,主CPU不受扩展CPU加入的影响,实现其固有功能,保证了测量数据的准确性;扩展CPU从主CPU中获取数据,不受主CPU的控制,按照现场的需求进行功能扩展。给出了详细的软硬件设计结构。该方案为传统仪表的升级改造提供了一种新思路,实践证明是可行的。关键词: 传统仪表 检测系统 单片机
上传时间: 2013-10-30
上传用户:evil
新颖实用的单片机双积分A/D转换电路和软件:摘 要: 通过对双积分A/ D 转换过程及其原理的分析,结合8031 单片机定时计数器的特点,设计出一种新的A/ D 转换电路. 详细介绍了这种转换电路的硬件原理及工作过程,给出了实用的硬件电路与软件设计框图. 通过比较分析,可以看出这种A/ D 转换电路性能价格比较高,软件编程简单,并且转换速度和精度优于一般的A/ D 转换电路. 这种设计思路为数模转换器(A/ D) 的升级提高指出一个明确的方向.关键词:单片机; 定时/ 计数器; A/ D 转换; 双积分 双积分A/ D 及定时计数器原理:我们先分析双积分A/ D 转换的工作原理. 如图1 所示,积分器先以固定时间T 对待测的输入模拟电压Vi 进行正向积分,积分电容C 积累的电荷为
上传时间: 2014-01-18
上传用户:hewenzhi
单片机温度控制系统的设计及实现 介绍在单片机温度控制系统的软硬件设计中的一些主要技术关键环节,该系统主要以8051单片机为核心,由温度检测电路,模/数转换电路,过零检测电路,报警与指示电路,光电隔离与功率放大电路等构成。关键词:单片机;PID算法;温度采样;抗干扰 单片机温度控制系统的组成及工作原理:在工业生产中,对温度控制系统的要求,主要是保证炉温按规定的温度工艺曲线变化,超调小或者无超调,稳定性好,不振荡,对系统的快速性要求不高。以下浅析了单片机电阻炉控温系统设计过程及实现方法。
上传时间: 2014-12-28
上传用户:642778338